User:Arthur Migliatti/Sandbox1
From Proteopedia
(Difference between revisions)
| Line 3: | Line 3: | ||
<StructureSection load='1trs' size='340' side='right' caption='Human Thioredoxin 1'> | <StructureSection load='1trs' size='340' side='right' caption='Human Thioredoxin 1'> | ||
| - | '''Thioredoxin'''(Trx) is a protein present in all organisms, from bacterias to complex beings as humans. This page will be focused on exploring the characteristics of '''Trx1''', a cytosolic form of Trx present in eukaryotes. Trx1 has an active site composed of 2 cysteines separated by 2 aminoacids (<scene name='91/911850/Trx_cys-active_site/2'>Cys32 - X - X - Cys35</scene>) which catalyses the reduction of other thiol-proteins and becomes oxidized. It is reduced back by '''[[Thioredoxin Reductase]]'''(TrxR), which, in the end, is reduced by '''NADPH'''. Together, the two proteins and NADPH form the system Trx<ref>Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radical Biology and Medicine 2014, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036.</ref>. As it is shown in this <scene name='91/911850/Conservation/1'>image</scene>, both Cys32 and Cys 35 were highly conserved during evolution(<font color='mediumvioletred'><b>dark pink</b></font>). One of the most important proteins that Trx reduces is '''[[Peroxiredoxin]]'''(Prx), which catalyses the reduction of Hidrogen Peroxide(H2O2) to water. Since high concentrations of H2O2 produces other potent oxidizing molecules, such as hydroxyl radical, Prx's action, and so Trx's also, are fundamental for the cell to have a redox homeostasis and to have low amount of damage. | + | '''Thioredoxin'''(Trx) is a protein present in all organisms, from bacterias to complex beings as humans. This page will be focused on exploring the characteristics of '''Trx1''', a cytosolic form of Trx present in eukaryotes. Trx1 has an active site composed of 2 cysteines separated by 2 aminoacids (<scene name='91/911850/Trx_cys-active_site/2'>Cys32 - X - X - Cys35</scene>) which catalyses the reduction of other thiol-proteins and becomes oxidized. It is reduced back by '''[[Thioredoxin Reductase]]'''(TrxR), which, in the end, is reduced by '''NADPH'''. Together, the two proteins and NADPH form the system Trx<ref>Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radical Biology and Medicine 2014, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036.</ref>. As it is shown in this <scene name='91/911850/Conservation/1'>image</scene>, both Cys32 and Cys 35 were highly conserved during evolution(<font color='mediumvioletred'><b>dark pink</b></font> = highly conserved, <font color='white'><b>white</b></font> = average, <font color='deepskyblue'><b>blue</b></font> = variable). One of the most important proteins that Trx reduces is '''[[Peroxiredoxin]]'''(Prx), which catalyses the reduction of Hidrogen Peroxide(H2O2) to water. Since high concentrations of H2O2 produces other potent oxidizing molecules, such as hydroxyl radical, Prx's action, and so Trx's also, are fundamental for the cell to have a redox homeostasis and to have low amount of damage. |
To reduce other proteins, first happens an attack from Cys32, creating an intermolecular dissulfide bond, represented <scene name='91/911850/C32_s-s_c206/1'>here</scene> between residue Cys32 from Trx1 and residue Cys206 from '''[[MsrA]]'''. After it, residue Cys35 attacks Cys32, creating a dissulfide bond between the two cysteines in Trx1's catalytic site. This is the <scene name='91/911850/Trx_cys_-_oxidized_-_diss_bond/4'>oxidized form of Trx1</scene>. | To reduce other proteins, first happens an attack from Cys32, creating an intermolecular dissulfide bond, represented <scene name='91/911850/C32_s-s_c206/1'>here</scene> between residue Cys32 from Trx1 and residue Cys206 from '''[[MsrA]]'''. After it, residue Cys35 attacks Cys32, creating a dissulfide bond between the two cysteines in Trx1's catalytic site. This is the <scene name='91/911850/Trx_cys_-_oxidized_-_diss_bond/4'>oxidized form of Trx1</scene>. | ||
Revision as of 01:31, 19 June 2022
Introduction
| |||||||||||
References
- ↑ Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radical Biology and Medicine 2014, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036.
- ↑ Holmgren, A. Thioredoxin Structure and Mechanism: Conformational Changes on Oxidation of the Active-Site Sulfhydryls to a Disulfide. Structure 1995, 3 (3), 239–243. https://doi.org/10.1016/S0969-2126(01)00153-8.
- ↑ Laurent, T. C.; Moore, E. C.; Reichard, P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. J Biol Chem 1964, 239, 3436–3444.
- ↑ Tao, L.; Gao, E.; Bryan, N. S.; Qu, Y.; Liu, H.-R.; Hu, A.; Christopher, T. A.; Lopez, B. L.; Yodoi, J.; Koch, W. J.; Feelisch, M.; Ma, X. L. Cardioprotective Effects of Thioredoxin in Myocardial Ischemia and the Reperfusion Role of S-Nitrosation. Proc Natl Acad Sci U S A 2004, 101 (31), 11471–11476. https://doi.org/10.1073/pnas.0402941101.
