Journal:FLS:1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (13:05, 21 June 2022) (edit) (undo)
 
Line 1: Line 1:
-
<Structure load='3hsw' size='450' frame='true' align='right' caption='' scene='Journal:FLS:1/Cv/1' />
+
<StructureSection load='3hsw' size='450' side='right' scene='Journal:FLS:1/Cv/1' caption=''>
=== Crystal structure of porcine pancreatic phospholipase A<sub>2</sub> in complex with 2-methoxycyclohexa-2-5-diene-1,4-dione ===
=== Crystal structure of porcine pancreatic phospholipase A<sub>2</sub> in complex with 2-methoxycyclohexa-2-5-diene-1,4-dione ===
<big>K. V. Dileep, I. Tintu, P. K. Mandal, P. Karthe, M. Haridas and C. Sadasivan</big><ref >DOI 10.1080/21553769.2012.689262</ref>
<big>K. V. Dileep, I. Tintu, P. K. Mandal, P. Karthe, M. Haridas and C. Sadasivan</big><ref >DOI 10.1080/21553769.2012.689262</ref>
Line 5: Line 5:
<b>Molecular Tour</b><br>
<b>Molecular Tour</b><br>
<scene name='Journal:FLS:1/Cv/4'>Curcumin</scene> possesses anti-inflammatory activity. The binding of curcumin with PLA<sub>2</sub> was studied using X-ray crystallography. Since the electron density found in the active site did not match with curcumin, <scene name='Journal:FLS:1/Cv/5'>2-methoxycyclohexa-2-5-diene-1,4-dione (MCW)</scene> (the photo-degraded product of curcumin) <scene name='Journal:FLS:1/Cv/6'>was fitted</scene> in the unexplained electron density. To understand the <scene name='Journal:FLS:1/Cv/9'>binding mode of actual curcumin</scene>, molecular docking studies was carried out. <scene name='Journal:FLS:1/Cv/10'>Both crystallographic and docked structures were superimposed</scene> with respect to the ligand position and identified that <scene name='Journal:FLS:1/Cv/13'>curcumin is binding in the hydrophobic cavity</scene> of PLA<sub>2</sub> with a binding energy -16.81 Kcal/mol. The binding mode is in such a manner that it can prevent the entry of substrate to the hydrophobic active site. These studies indicate that curcumin can be act as an inhibitor to PLA<sub>2</sub>. The atomic coordinates have been deposited with Protein Data Bank (PDB ID: [[3hsw]]).
<scene name='Journal:FLS:1/Cv/4'>Curcumin</scene> possesses anti-inflammatory activity. The binding of curcumin with PLA<sub>2</sub> was studied using X-ray crystallography. Since the electron density found in the active site did not match with curcumin, <scene name='Journal:FLS:1/Cv/5'>2-methoxycyclohexa-2-5-diene-1,4-dione (MCW)</scene> (the photo-degraded product of curcumin) <scene name='Journal:FLS:1/Cv/6'>was fitted</scene> in the unexplained electron density. To understand the <scene name='Journal:FLS:1/Cv/9'>binding mode of actual curcumin</scene>, molecular docking studies was carried out. <scene name='Journal:FLS:1/Cv/10'>Both crystallographic and docked structures were superimposed</scene> with respect to the ligand position and identified that <scene name='Journal:FLS:1/Cv/13'>curcumin is binding in the hydrophobic cavity</scene> of PLA<sub>2</sub> with a binding energy -16.81 Kcal/mol. The binding mode is in such a manner that it can prevent the entry of substrate to the hydrophobic active site. These studies indicate that curcumin can be act as an inhibitor to PLA<sub>2</sub>. The atomic coordinates have been deposited with Protein Data Bank (PDB ID: [[3hsw]]).
- 
- 
<references/>
<references/>
 +
</StructureSection>
__NOEDITSECTION__
__NOEDITSECTION__

Current revision

PDB ID 3hsw

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Jaime Prilusky

This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.
Personal tools