Pyruvate decarboxylase
From Proteopedia
(Difference between revisions)
Line 19: | Line 19: | ||
- | The <scene name='40/401493/Active_site/1'>active site</scene> of PDC consists of Glu 477, Asp28, His114, and His 115 as well as the thiamine diphosphate cofactor. Hydrogen bonding occurs between the substrate and Asp28, His114, and Thr73. In the catalytic step of the reaction mechanism, <scene name='Ken_Engle_SANDBOX/Glu_473/2'>Glu 473</scene>, shown in red, donates a proton to the pyruvate. The scene shows the close proximity of this residue to the pyruvate. The negative charge of the Glu residue following the protonation of the substrate leads to the destabilization of the pyruvate carboxylate group. Next the carboxyl group leaves, using thyiamine diphosphate as an electron sink (described below). Following decarboxylation in the final step of the mechanism, release of acetaldehyde, a proton is transferred to the Glu477 residue from a cofactor. After the protonation in a concerted step, a water molecule donates a proton to the substrate while receiving a proton from Glu477. As the proton is taken from the substrate, the electrons move to form a carbonyl, which leads to the release of the acetaldehyde | + | The <scene name='40/401493/Active_site/1'>active site</scene> of PDC consists of Glu 477, Asp28, His114, and His 115 as well as the thiamine diphosphate cofactor. Hydrogen bonding occurs between the substrate and Asp28, His114, and Thr73. In the catalytic step of the reaction mechanism, <scene name='Ken_Engle_SANDBOX/Glu_473/2'>Glu 473</scene>, shown in red, donates a proton to the pyruvate. The scene shows the close proximity of this residue to the pyruvate. The negative charge of the Glu residue following the protonation of the substrate leads to the destabilization of the pyruvate carboxylate group. Next the carboxyl group leaves, using thyiamine diphosphate as an electron sink (described below). Following decarboxylation in the final step of the mechanism, release of acetaldehyde, a proton is transferred to the Glu477 residue from a cofactor. After the protonation in a concerted step, a water molecule donates a proton to the substrate while receiving a proton from Glu477. As the proton is taken from the substrate, the electrons move to form a carbonyl, which leads to the release of the acetaldehyde. |
==Regulation== | ==Regulation== |
Current revision
|
3D structures of pyruvate decarboxylase
Updated on 23-June-2022
Additional Resources
For additional information, see: Carbohydrate Metabolism
References
- ↑ Garrett, R.H., & Grisham, C.M. (2007). Biochemistry. Belmont, CA: Thompson.
- ↑ Dobritzsch D, Konig S, Schneider G, Lu G. High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. J Biol Chem. 1998 Aug 7;273(32):20196-204. PMID:9685367
- ↑ Sergienko EA, Jordan F. Catalytic acid-base groups in yeast pyruvate decarboxylase. 3. A steady-state kinetic model consistent with the behavior of both wild-type and variant enzymes at all relevant pH values. Biochemistry. 2001 Jun 26;40(25):7382-403. PMID:11412092
- ↑ PMID:PMID: 8974393
Proteopedia Page Contributors and Editors (what is this?)
Michal Harel, Ann Taylor, Alexander Berchansky, Joel L. Sussman, David Canner, Ken Engle