|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of mouse Glutaminase C, phosphate-bound form== | | ==Crystal structure of mouse Glutaminase C, phosphate-bound form== |
- | <StructureSection load='3ss4' size='340' side='right' caption='[[3ss4]], [[Resolution|resolution]] 2.85Å' scene=''> | + | <StructureSection load='3ss4' size='340' side='right'caption='[[3ss4]], [[Resolution|resolution]] 2.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3ss4]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SS4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3SS4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3ss4]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SS4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SS4 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ss3|3ss3]], [[3ss5|3ss5]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3ss3|3ss3]], [[3ss5|3ss5]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Gls, GLS1, mKIAA0838 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Gls, GLS1, mKIAA0838 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutaminase Glutaminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.2 3.5.1.2] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glutaminase Glutaminase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.2 3.5.1.2] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ss4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ss4 OCA], [http://pdbe.org/3ss4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ss4 RCSB], [http://www.ebi.ac.uk/pdbsum/3ss4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ss4 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ss4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ss4 OCA], [https://pdbe.org/3ss4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ss4 RCSB], [https://www.ebi.ac.uk/pdbsum/3ss4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ss4 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GLSK_MOUSE GLSK_MOUSE]] Catalyzes the first reaction in the primary pathway for the renal catabolism of glutamine. Plays a role in maintaining acid-base homeostasis. Regulates the levels of the neurotransmitter glutamate in the brain.<ref>PMID:16641247</ref> <ref>PMID:22373647</ref> <ref>PMID:22228304</ref> | + | [[https://www.uniprot.org/uniprot/GLSK_MOUSE GLSK_MOUSE]] Catalyzes the first reaction in the primary pathway for the renal catabolism of glutamine. Plays a role in maintaining acid-base homeostasis. Regulates the levels of the neurotransmitter glutamate in the brain.<ref>PMID:16641247</ref> <ref>PMID:22373647</ref> <ref>PMID:22228304</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 23: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Glutaminase|Glutaminase]] | + | *[[Glutaminase 3D structures|Glutaminase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 29: |
Line 29: |
| </StructureSection> | | </StructureSection> |
| [[Category: Glutaminase]] | | [[Category: Glutaminase]] |
| + | [[Category: Large Structures]] |
| [[Category: Lk3 transgenic mice]] | | [[Category: Lk3 transgenic mice]] |
| [[Category: Ambrosio, A L.B]] | | [[Category: Ambrosio, A L.B]] |
| Structural highlights
Function
[GLSK_MOUSE] Catalyzes the first reaction in the primary pathway for the renal catabolism of glutamine. Plays a role in maintaining acid-base homeostasis. Regulates the levels of the neurotransmitter glutamate in the brain.[1] [2] [3]
Publication Abstract from PubMed
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism.,Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, Pereira HM, Garratt RC, Dias SM, Ambrosio AL Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1092-7. Epub 2012 Jan 6. PMID:22228304[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Masson J, Darmon M, Conjard A, Chuhma N, Ropert N, Thoby-Brisson M, Foutz AS, Parrot S, Miller GM, Jorisch R, Polan J, Hamon M, Hen R, Rayport S. Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J Neurosci. 2006 Apr 26;26(17):4660-71. PMID:16641247 doi:10.1523/JNEUROSCI.4241-05.2006
- ↑ El Hage M, Masson J, Conjard-Duplany A, Ferrier B, Baverel G, Martin G. Brain slices from glutaminase-deficient mice metabolize less glutamine: a cellular metabolomic study with carbon 13 NMR. J Cereb Blood Flow Metab. 2012 May;32(5):816-24. doi: 10.1038/jcbfm.2012.22. Epub, 2012 Feb 29. PMID:22373647 doi:10.1038/jcbfm.2012.22
- ↑ Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, Pereira HM, Garratt RC, Dias SM, Ambrosio AL. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1092-7. Epub 2012 Jan 6. PMID:22228304 doi:10.1073/pnas.1112495109
- ↑ Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, Pereira HM, Garratt RC, Dias SM, Ambrosio AL. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1092-7. Epub 2012 Jan 6. PMID:22228304 doi:10.1073/pnas.1112495109
|