|
|
| Line 1: |
Line 1: |
| | | | |
| | ==Crystal structure of adenosine 5'-phosphosulfate kinase from Arabidopsis Thaliana in Complex with AMPPNP and APS== | | ==Crystal structure of adenosine 5'-phosphosulfate kinase from Arabidopsis Thaliana in Complex with AMPPNP and APS== |
| - | <StructureSection load='3uie' size='340' side='right' caption='[[3uie]], [[Resolution|resolution]] 1.79Å' scene=''> | + | <StructureSection load='3uie' size='340' side='right'caption='[[3uie]], [[Resolution|resolution]] 1.79Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[3uie]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UIE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3UIE FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3uie]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UIE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UIE FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADX:ADENOSINE-5-PHOSPHOSULFATE'>ADX</scene>, <scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADX:ADENOSINE-5-PHOSPHOSULFATE'>ADX</scene>, <scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">AKN1, At2g14750, F26C24.11, T6B13.1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">AKN1, At2g14750, F26C24.11, T6B13.1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Adenylyl-sulfate_kinase Adenylyl-sulfate kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.25 2.7.1.25] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Adenylyl-sulfate_kinase Adenylyl-sulfate kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.25 2.7.1.25] </span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3uie FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uie OCA], [http://pdbe.org/3uie PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3uie RCSB], [http://www.ebi.ac.uk/pdbsum/3uie PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3uie ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3uie FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uie OCA], [https://pdbe.org/3uie PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3uie RCSB], [https://www.ebi.ac.uk/pdbsum/3uie PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3uie ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/APK1_ARATH APK1_ARATH]] Catalyzes the synthesis of activated sulfate. Essential for plant reproduction and viability. Required for the production of glucosinolates.<ref>PMID:11488606</ref> <ref>PMID:19304933</ref> <ref>PMID:19903478</ref> <ref>PMID:23218016</ref> <ref>PMID:7988678</ref> | + | [[https://www.uniprot.org/uniprot/APK1_ARATH APK1_ARATH]] Catalyzes the synthesis of activated sulfate. Essential for plant reproduction and viability. Required for the production of glucosinolates.<ref>PMID:11488606</ref> <ref>PMID:19304933</ref> <ref>PMID:19903478</ref> <ref>PMID:23218016</ref> <ref>PMID:7988678</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 26: |
Line 26: |
| | [[Category: Adenylyl-sulfate kinase]] | | [[Category: Adenylyl-sulfate kinase]] |
| | [[Category: Arath]] | | [[Category: Arath]] |
| | + | [[Category: Large Structures]] |
| | [[Category: Jez, J M]] | | [[Category: Jez, J M]] |
| | [[Category: Ravilious, G E]] | | [[Category: Ravilious, G E]] |
| Structural highlights
3uie is a 3 chain structure with sequence from Arath. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Ligands: | , , |
| Gene: | AKN1, At2g14750, F26C24.11, T6B13.1 (ARATH) |
| Activity: | Adenylyl-sulfate kinase, with EC number 2.7.1.25 |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[APK1_ARATH] Catalyzes the synthesis of activated sulfate. Essential for plant reproduction and viability. Required for the production of glucosinolates.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Adenosine-5'-phosphosulfate (APS) kinase (APSK) catalyzes the phosphorylation of APS to 3'-phospho-APS (PAPS). In Arabidopsis thaliana, APSK is essential for reproductive viability and competes with APS reductase to partition sulfate between the primary and secondary branches of the sulfur assimilatory pathway; however, the biochemical regulation of APSK is poorly understood. The 1.8-A resolution crystal structure of APSR from A. thaliana (AtAPSK) in complex with beta,gamma-imidoadenosine-5'-triphosphate, Mg(2+), and APS provides a view of the Michaelis complex for this enzyme and reveals the presence of an intersubunit disulfide bond between Cys86 and Cys119. Functional analysis of AtAPSK demonstrates that reduction of Cys86-Cys119 resulted in a 17-fold higher k(cat)/K(m) and a 15-fold increase in K(i) for substrate inhibition by APS compared with the oxidized enzyme. The C86A/C119A mutant was kinetically similar to the reduced WT enzyme. Gel- and activity-based titrations indicate that the midpoint potential of the disulfide in AtAPSK is comparable to that observed in APS reductase. Both cysteines are invariant among the APSK from plants, but not other organisms, which suggests redox-control as a unique regulatory feature of the plant APSK. Based on structural, functional, and sequence analyses, we propose that the redox-sensitive APSK evolved after bifurcation of the sulfur assimilatory pathway in the green plant lineage and that changes in redox environment resulting from oxidative stresses may affect partitioning of APS into the primary and secondary thiol metabolic routes by having opposing effects on APSK and APS reductase in plants.
Structural basis and evolution of redox regulation in plant adenosine-5'-phosphosulfate kinase.,Ravilious GE, Nguyen A, Francois JA, Jez JM Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):309-14. Epub 2011 Dec 19. PMID:22184237[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Lillig CH, Schiffmann S, Berndt C, Berken A, Tischka R, Schwenn JD. Molecular and catalytic properties of Arabidopsis thaliana adenylyl sulfate (APS)-kinase. Arch Biochem Biophys. 2001 Aug 15;392(2):303-10. PMID:11488606 doi:http://dx.doi.org/10.1006/abbi.2001.2453
- ↑ Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flugge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S. Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell. 2009 Mar;21(3):910-27. doi: 10.1105/tpc.109.065581. Epub 2009 Mar 20. PMID:19304933 doi:http://dx.doi.org/10.1105/tpc.109.065581
- ↑ Mugford SG, Matthewman CA, Hill L, Kopriva S. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability. FEBS Lett. 2010 Jan 4;584(1):119-23. doi: 10.1016/j.febslet.2009.11.014. Epub . PMID:19903478 doi:http://dx.doi.org/10.1016/j.febslet.2009.11.014
- ↑ Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Phytochemistry. 2013 Feb;86:36-43. doi: 10.1016/j.phytochem.2012.11.006. Epub, 2012 Dec 3. PMID:23218016 doi:http://dx.doi.org/10.1016/j.phytochem.2012.11.006
- ↑ Schiffmann S, Schwenn JD. APS-sulfotransferase activity is identical to higher plant APS-kinase (EC 2.7.1.25). FEBS Lett. 1994 Dec 5;355(3):229-32. PMID:7988678
- ↑ Ravilious GE, Nguyen A, Francois JA, Jez JM. Structural basis and evolution of redox regulation in plant adenosine-5'-phosphosulfate kinase. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):309-14. Epub 2011 Dec 19. PMID:22184237 doi:10.1073/pnas.1115772108
|