|
|
Line 3: |
Line 3: |
| <StructureSection load='3sl2' size='340' side='right'caption='[[3sl2]], [[Resolution|resolution]] 1.61Å' scene=''> | | <StructureSection load='3sl2' size='340' side='right'caption='[[3sl2]], [[Resolution|resolution]] 1.61Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3sl2]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SL2 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=3SL2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3sl2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SL2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SL2 FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">yycG, BSU40400 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">yycG, BSU40400 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histidine_kinase Histidine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.13.3 2.7.13.3] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Histidine_kinase Histidine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.13.3 2.7.13.3] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=3sl2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sl2 OCA], [http://pdbe.org/3sl2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3sl2 RCSB], [http://www.ebi.ac.uk/pdbsum/3sl2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3sl2 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3sl2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sl2 OCA], [https://pdbe.org/3sl2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3sl2 RCSB], [https://www.ebi.ac.uk/pdbsum/3sl2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3sl2 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/YYCG_BACSU YYCG_BACSU]] Member of the two-component regulatory system YycG/YycF involved in the regulation of the ftsAZ operon, the yocH and ykvT, cwlO, lytE, ydjM, yjeA, yoeB genes and the tagAB and tagDEF operons. Probably phosphorylates YycF.<ref>PMID:10878122</ref> <ref>PMID:17581128</ref> <ref>PMID:9829949</ref> | + | [[https://www.uniprot.org/uniprot/YYCG_BACSU YYCG_BACSU]] Member of the two-component regulatory system YycG/YycF involved in the regulation of the ftsAZ operon, the yocH and ykvT, cwlO, lytE, ydjM, yjeA, yoeB genes and the tagAB and tagDEF operons. Probably phosphorylates YycF.<ref>PMID:10878122</ref> <ref>PMID:17581128</ref> <ref>PMID:9829949</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Structural highlights
Function
[YYCG_BACSU] Member of the two-component regulatory system YycG/YycF involved in the regulation of the ftsAZ operon, the yocH and ykvT, cwlO, lytE, ydjM, yjeA, yoeB genes and the tagAB and tagDEF operons. Probably phosphorylates YycF.[1] [2] [3]
Publication Abstract from PubMed
In Bacillus subtilis, the WalRK (YycFG) two-component system coordinates murein synthesis with cell division. It regulates the expression of autolysins that function in cell-wall remodeling and of proteins that modulate autolysin activity. The transcription factor WalR is activated upon phosphorylation by the histidine kinase WalK, a multi-domain homodimer. It autophosphorylates one of its histidine residues by transferring the gamma-phosphate from ATP bound to its ATP-binding domain. Here, the high-resolution crystal structure of the ATP-binding domain of WalK in complex with ATP is presented at 1.61 A resolution. The bound ATP remains intact in the crystal lattice. It appears that the strong binding interactions and the nature of the binding pocket contribute to its stability. The triphosphate moiety of ATP wraps around an Mg(2+) ion, providing three O atoms for coordination in a near-ideal octahedral geometry. The ATP molecule also makes strong interactions with the protein. In addition, there is a short contact between the exocyclic O3' of the sugar ring and O2B of the beta-phosphate, implying an internal hydrogen bond. The stability of the WalK-ATP complex in the crystal lattice suggests that such a complex may exist in vivo poised for initiation of signal transmission. This feature may therefore be part of the sensing mechanism by which the WalRK two-component system is so rapidly activated when cells encounter conditions conducive for growth.
ATP forms a stable complex with the essential histidine kinase WalK (YycG) domain.,Celikel R, Veldore VH, Mathews I, Devine KM, Varughese KI Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):839-45. doi:, 10.1107/S090744491201373X. Epub 2012 Jun 15. PMID:22751669[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Fukuchi K, Kasahara Y, Asai K, Kobayashi K, Moriya S, Ogasawara N. The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology. 2000 Jul;146 ( Pt 7):1573-83. PMID:10878122
- ↑ Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol. 2007 Jul;65(1):180-200. PMID:17581128 doi:http://dx.doi.org/MMI5782
- ↑ Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol. 1998 Dec;180(23):6375-83. PMID:9829949
- ↑ Celikel R, Veldore VH, Mathews I, Devine KM, Varughese KI. ATP forms a stable complex with the essential histidine kinase WalK (YycG) domain. Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):839-45. doi:, 10.1107/S090744491201373X. Epub 2012 Jun 15. PMID:22751669 doi:http://dx.doi.org/10.1107/S090744491201373X
|