|
|
Line 3: |
Line 3: |
| <StructureSection load='4b0e' size='340' side='right'caption='[[4b0e]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='4b0e' size='340' side='right'caption='[[4b0e]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4b0e]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_pestis"_(lehmann_and_neumann_1896)_migula_1900 "bacillus pestis" (lehmann and neumann 1896) migula 1900]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4B0E OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4B0E FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4b0e]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_pestis"_(lehmann_and_neumann_1896)_migula_1900 "bacillus pestis" (lehmann and neumann 1896) migula 1900]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4B0E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4B0E FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2xet|2xet]], [[4b0m|4b0m]], [[4ay0|4ay0]], [[4ayf|4ayf]], [[4az8|4az8]]</td></tr> | + | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2xet|2xet]], [[4b0m|4b0m]], [[4ay0|4ay0]], [[4ayf|4ayf]], [[4az8|4az8]]</div></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4b0e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4b0e OCA], [http://pdbe.org/4b0e PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4b0e RCSB], [http://www.ebi.ac.uk/pdbsum/4b0e PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4b0e ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4b0e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4b0e OCA], [https://pdbe.org/4b0e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4b0e RCSB], [https://www.ebi.ac.uk/pdbsum/4b0e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4b0e ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CAF1A_YERPE CAF1A_YERPE]] A probable role in capsular biogenesis. It is likely that the caf1A molecule binds F1 antigen subunits during the extracellular secretion process. | + | [[https://www.uniprot.org/uniprot/CAF1A_YERPE CAF1A_YERPE]] A probable role in capsular biogenesis. It is likely that the caf1A molecule binds F1 antigen subunits during the extracellular secretion process. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Structural highlights
Function
[CAF1A_YERPE] A probable role in capsular biogenesis. It is likely that the caf1A molecule binds F1 antigen subunits during the extracellular secretion process.
Publication Abstract from PubMed
Many virulence organelles of Gram-negative bacterial pathogens are assembled via the chaperone/usher pathway. The chaperone transports organelle subunits across the periplasm to the outer membrane usher, where they are released and incorporated into growing fibers. Here, we elucidate the mechanism of the usher-targeting step in assembly of the Yersinia pestis F1 capsule at the atomic level. The usher interacts almost exclusively with the chaperone in the chaperone:subunit complex. In free chaperone, a pair of conserved proline residues at the beginning of the subunit-binding loop form a "proline lock" that occludes the usher-binding surface and blocks usher binding. Binding of the subunit to the chaperone rotates the proline lock away from the usher-binding surface, allowing the chaperone-subunit complex to bind to the usher. We show that the proline lock exists in other chaperone/usher systems and represents a general allosteric mechanism for selective targeting of chaperone:subunit complexes to the usher and for release and recycling of the free chaperone.
Allosteric Mechanism Controls Traffic in the Chaperone/Usher Pathway.,Di Yu X, Dubnovitsky A, Pudney AF, Macintyre S, Knight SD, Zavialov AV Structure. 2012 Sep 11. pii: S0969-2126(12)00298-5. doi:, 10.1016/j.str.2012.08.016. PMID:22981947[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Di Yu X, Dubnovitsky A, Pudney AF, Macintyre S, Knight SD, Zavialov AV. Allosteric Mechanism Controls Traffic in the Chaperone/Usher Pathway. Structure. 2012 Sep 11. pii: S0969-2126(12)00298-5. doi:, 10.1016/j.str.2012.08.016. PMID:22981947 doi:10.1016/j.str.2012.08.016
|