Malate dehydrogenase
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
__TOC__ | __TOC__ | ||
==Function== | ==Function== | ||
| - | [[Malate dehydrogenase|Malate Dehydrogenase]] (MDH; PDB entry [http://www.pdb.org/pdb/explore/explore.do?structureId=2X0I 2x0i]) is most known for its role in the metabolic pathway of the tricarboxylic acid cycle, also know as the Krebs cycle (after [http://en.wikipedia.org/wiki/Hans_Adolf_Krebs| Sir Hans Krebs]), which is critical to cellular respiration in cells [http://en.wikipedia.org/wiki/Citric_acid_cycle]; however, the enzyme is also involved on many other metabolic pathways such as glyoxylate bypass, amino acid synthesis, gluconeogenesis, and oxidation/reduction balance <ref>PMID:12537350</ref>. It is classified as an oxidoreductase[http://en.wikipedia.org/wiki/Oxidoreductase]. Malate dehydrogenase has been extensively studied due to its many isozymes <ref>PMID:20173310</ref>. The enzyme exists in two subcellular locations: mitochondria and cytoplasm. In the mitochondria, the enzyme catalyzes the reaction of malate to oxaloacetate; however, in the cytoplasm, the enzyme catalyzes oxaloacetate to malate to allow transport <ref>PMID:20173310</ref>. This conversion is an essential catalytic step in each different metabolic mechanism. The enzyme malate dehydrogenase is composed of either a dimer or tetramer depending on the location of the enzyme and the organism it is located in <ref>PMID: 9834842</ref>. During catalysis, the enzyme subunits are non-cooperative between active sites. The mitochondrial MDH suffers a complex allosteric control by citrate, but no other known metabolic regulation mechanisms have been discovered. Further, the exact mechanism of regulation has yet to be discovered <ref>PMID:7574693</ref>. The optimal pH is 7.6 for oxaloacetate conversion and 9.6 for malate conversion. The reported K<sub>m</sub> value for malate conversion is 215 µM and the V<sub>max</sub> value is 87.8 µM/min <ref>PMID:19277715</ref>. For halophilic MDH details, see [[Halophilic malate dehydrogenase]]. See also:<br /> | + | [[Malate dehydrogenase|Malate Dehydrogenase]] (MDH; PDB entry [http://www.pdb.org/pdb/explore/explore.do?structureId=2X0I 2x0i]) is most known for its role in the metabolic pathway of the [[tricarboxylic acid cycle]], also know as the Krebs cycle (after [http://en.wikipedia.org/wiki/Hans_Adolf_Krebs| Sir Hans Krebs]), which is critical to cellular respiration in cells [http://en.wikipedia.org/wiki/Citric_acid_cycle]; however, the enzyme is also involved on many other metabolic pathways such as glyoxylate bypass, amino acid synthesis, gluconeogenesis, and oxidation/reduction balance <ref>PMID:12537350</ref>. It is classified as an oxidoreductase[http://en.wikipedia.org/wiki/Oxidoreductase]. Malate dehydrogenase has been extensively studied due to its many isozymes <ref>PMID:20173310</ref>. The enzyme exists in two subcellular locations: mitochondria and cytoplasm. In the mitochondria, the enzyme catalyzes the reaction of malate to oxaloacetate; however, in the cytoplasm, the enzyme catalyzes oxaloacetate to malate to allow transport <ref>PMID:20173310</ref>. This conversion is an essential catalytic step in each different metabolic mechanism. The enzyme malate dehydrogenase is composed of either a dimer or tetramer depending on the location of the enzyme and the organism it is located in <ref>PMID: 9834842</ref>. During catalysis, the enzyme subunits are non-cooperative between active sites. The mitochondrial MDH suffers a complex allosteric control by citrate, but no other known metabolic regulation mechanisms have been discovered. Further, the exact mechanism of regulation has yet to be discovered <ref>PMID:7574693</ref>. The optimal pH is 7.6 for oxaloacetate conversion and 9.6 for malate conversion. The reported K<sub>m</sub> value for malate conversion is 215 µM and the V<sub>max</sub> value is 87.8 µM/min <ref>PMID:19277715</ref>. For halophilic MDH details, see [[Halophilic malate dehydrogenase]]. See also:<br /> |
*[[Krebs cycle carbons]] | *[[Krebs cycle carbons]] | ||
*[[Krebs cycle importance]] | *[[Krebs cycle importance]] | ||
Revision as of 13:04, 13 September 2022
| |||||||||||
Additional Resources
References
- ↑ Minarik P, Tomaskova N, Kollarova M, Antalik M. Malate dehydrogenases--structure and function. Gen Physiol Biophys. 2002 Sep;21(3):257-65. PMID:12537350
- ↑ Matsuda T, Takahashi-Yanaga F, Yoshihara T, Maenaka K, Watanabe Y, Miwa Y, Morimoto S, Kubohara Y, Hirata M, Sasaguri T. Dictyostelium Differentiation-Inducing Factor-1 Binds to Mitochondrial Malate Dehydrogenase and Inhibits Its Activity. J Pharmacol Sci. 2010 Feb 20. PMID:20173310
- ↑ Matsuda T, Takahashi-Yanaga F, Yoshihara T, Maenaka K, Watanabe Y, Miwa Y, Morimoto S, Kubohara Y, Hirata M, Sasaguri T. Dictyostelium Differentiation-Inducing Factor-1 Binds to Mitochondrial Malate Dehydrogenase and Inhibits Its Activity. J Pharmacol Sci. 2010 Feb 20. PMID:20173310
- ↑ Musrati RA, Kollarova M, Mernik N, Mikulasova D. Malate dehydrogenase: distribution, function and properties. Gen Physiol Biophys. 1998 Sep;17(3):193-210. PMID:9834842
- ↑ Boernke WE, Millard CS, Stevens PW, Kakar SN, Stevens FJ, Donnelly MI. Stringency of substrate specificity of Escherichia coli malate dehydrogenase. Arch Biochem Biophys. 1995 Sep 10;322(1):43-52. PMID:7574693 doi:http://dx.doi.org/10.1006/abbi.1995.1434
- ↑ Plancarte A, Nava G, Mendoza-Hernandez G. Purification, properties, and kinetic studies of cytoplasmic malate dehydrogenase from Taenia solium cysticerci. Parasitol Res. 2009 Jul;105(1):175-83. Epub 2009 Mar 10. PMID:19277715 doi:10.1007/s00436-009-1380-6
- ↑ Goward CR, Nicholls DJ. Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci. 1994 Oct;3(10):1883-8. PMID:7849603 doi:http://dx.doi.org/10.1002/pro.5560031027
Proteopedia Page Contributors and Editors (what is this?)
Michal Harel, Alexander Berchansky, Jake Ezell, Joel L. Sussman, Joshua Johnson, Angel Herraez, Jaime Prilusky, David Canner

