|
|
| Line 3: |
Line 3: |
| | <SX load='4crn' size='340' side='right' viewer='molstar' caption='[[4crn]], [[Resolution|resolution]] 9.10Å' scene=''> | | <SX load='4crn' size='340' side='right' viewer='molstar' caption='[[4crn]], [[Resolution|resolution]] 9.10Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4crn]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CRN OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=4CRN FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4crn]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CRN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4CRN FirstGlance]. <br> |
| | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene></td></tr> | | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4crm|4crm]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4crn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4crn OCA], [https://pdbe.org/4crn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4crn RCSB], [https://www.ebi.ac.uk/pdbsum/4crn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4crn ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=4crn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4crn OCA], [http://pdbe.org/4crn PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4crn RCSB], [http://www.ebi.ac.uk/pdbsum/4crn PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4crn ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/ERF3_YEAST ERF3_YEAST]] Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.<ref>PMID:7556078</ref> <ref>PMID:12923185</ref> <ref>PMID:15337765</ref> [[http://www.uniprot.org/uniprot/ERF1_YEAST ERF1_YEAST]] Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA (By similarity).<ref>PMID:7556078</ref> | + | [[https://www.uniprot.org/uniprot/ERF3_YEAST ERF3_YEAST]] Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.<ref>PMID:7556078</ref> <ref>PMID:12923185</ref> <ref>PMID:15337765</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 23: |
Line 22: |
| | __TOC__ | | __TOC__ |
| | </SX> | | </SX> |
| - | [[Category: Atcc 18824]] | |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Barrio-Garcia, C]] | + | [[Category: Saccharomyces cerevisiae]] |
| - | [[Category: Becker, T]] | + | [[Category: Barrio-Garcia C]] |
| - | [[Category: Beckmann, R]] | + | [[Category: Becker T]] |
| - | [[Category: Berninghausen, O]] | + | [[Category: Beckmann R]] |
| - | [[Category: Eyler, D]] | + | [[Category: Berninghausen O]] |
| - | [[Category: Green, R]] | + | [[Category: Eyler D]] |
| - | [[Category: Hauser, A]] | + | [[Category: Green R]] |
| - | [[Category: Heuer, A]] | + | [[Category: Hauser A]] |
| - | [[Category: Preis, A]] | + | [[Category: Heuer A]] |
| - | [[Category: Cryo-em]]
| + | [[Category: Preis A]] |
| - | [[Category: Termination]]
| + | |
| - | [[Category: Translation]]
| + | |
| Structural highlights
Function
[ERF3_YEAST] Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.[1] [2] [3]
Publication Abstract from PubMed
Termination and ribosome recycling are essential processes in translation. In eukaryotes, a stop codon in the ribosomal A site is decoded by a ternary complex consisting of release factors eRF1 and guanosine triphosphate (GTP)-bound eRF3. After GTP hydrolysis, eRF3 dissociates, and ABCE1 can bind to eRF1-loaded ribosomes to stimulate peptide release and ribosomal subunit dissociation. Here, we present cryoelectron microscopic (cryo-EM) structures of a pretermination complex containing eRF1-eRF3 and a termination/prerecycling complex containing eRF1-ABCE1. eRF1 undergoes drastic conformational changes: its central domain harboring the catalytically important GGQ loop is either packed against eRF3 or swung toward the peptidyl transferase center when bound to ABCE1. Additionally, in complex with eRF3, the N-terminal domain of eRF1 positions the conserved NIKS motif proximal to the stop codon, supporting its suggested role in decoding, yet it appears to be delocalized in the presence of ABCE1. These results suggest that stop codon decoding and peptide release can be uncoupled during termination.
Cryoelectron Microscopic Structures of Eukaryotic Translation Termination Complexes Containing eRF1-eRF3 or eRF1-ABCE1.,Preis A, Heuer A, Barrio-Garcia C, Hauser A, Eyler DE, Berninghausen O, Green R, Becker T, Beckmann R Cell Rep. 2014 Jul 10;8(1):59-65. doi: 10.1016/j.celrep.2014.04.058. Epub 2014, Jul 4. PMID:25001285[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 1;14(17):4365-73. PMID:7556078
- ↑ Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem. 2003 Oct 3;278(40):38287-91. Epub 2003 Aug 15. PMID:12923185 doi:http://dx.doi.org/10.1074/jbc.C300300200
- ↑ Kobayashi T, Funakoshi Y, Hoshino S, Katada T. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem. 2004 Oct 29;279(44):45693-700. Epub 2004 Aug 26. PMID:15337765 doi:http://dx.doi.org/10.1074/jbc.M405163200
- ↑ Preis A, Heuer A, Barrio-Garcia C, Hauser A, Eyler DE, Berninghausen O, Green R, Becker T, Beckmann R. Cryoelectron Microscopic Structures of Eukaryotic Translation Termination Complexes Containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep. 2014 Jul 10;8(1):59-65. doi: 10.1016/j.celrep.2014.04.058. Epub 2014, Jul 4. PMID:25001285 doi:http://dx.doi.org/10.1016/j.celrep.2014.04.058
|