|
|
Line 3: |
Line 3: |
| <StructureSection load='4csi' size='340' side='right'caption='[[4csi]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='4csi' size='340' side='right'caption='[[4csi]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4csi]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_16453 Atcc 16453]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CSI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4CSI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4csi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/[Humicola]_grisea_var._thermoidea [Humicola] grisea var. thermoidea]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CSI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4CSI FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4csi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4csi OCA], [https://pdbe.org/4csi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4csi RCSB], [https://www.ebi.ac.uk/pdbsum/4csi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4csi ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulose_1,4-beta-cellobiosidase_(reducing_end) Cellulose 1,4-beta-cellobiosidase (reducing end)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.176 3.2.1.176] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4csi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4csi OCA], [http://pdbe.org/4csi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4csi RCSB], [http://www.ebi.ac.uk/pdbsum/4csi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4csi ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [[https://www.uniprot.org/uniprot/GUX1_HUMGT GUX1_HUMGT]] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 16453]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Askarieh, G]] | + | [[Category: Askarieh G]] |
- | [[Category: Goedegebuur, F]] | + | [[Category: Goedegebuur F]] |
- | [[Category: Haddad-Momeni, M]] | + | [[Category: Haddad-Momeni M]] |
- | [[Category: Hansson, H]] | + | [[Category: Hansson H]] |
- | [[Category: Karkehabadi, S]] | + | [[Category: Karkehabadi S]] |
- | [[Category: Larenas, E]] | + | [[Category: Larenas E]] |
- | [[Category: Mitchinson, C]] | + | [[Category: Mitchinson C]] |
- | [[Category: Sandgren, M]] | + | [[Category: Sandgren M]] |
- | [[Category: Stahlberg, J]] | + | [[Category: Stahlberg J]] |
- | [[Category: Glycoside hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
[GUX1_HUMGT] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
Publication Abstract from PubMed
Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) play a key role in biomass recycling in nature. They are typically the most abundant enzymes expressed by potent cellulolytic fungi, and are also responsible for the majority of hydrolytic potential in enzyme cocktails for industrial processing of plant biomass. The thermostability of the enzyme is an important parameter for industrial utilization. In this study, Cel7 enzymes from different fungi were expressed in a fungal host and assayed for thermostability, including Hypocrea jecorina Cel7A as a reference. The most stable of the homologues, Humicola grisea var. thermoidea Cel7A, exhibits a 10 degrees C higher melting temperature (T(m) of 72.5 degrees C) and showed a 4-5 times higher initial hydrolysis rate than H. jecorina Cel7A on phosphoric acid-swollen cellulose and showed the best performance of the tested enzymes on pretreated corn stover at elevated temperature (65 degrees C, 24 h). The enzyme shares 57% sequence identity with H. jecorina Cel7A and consists of a GH7 catalytic module connected by a linker to a C-terminal CBM1 carbohydrate-binding module. The crystal structure of the H. grisea var. thermoidea Cel7A catalytic module (1.8 A resolution; R(work) and R(free) of 0.16 and 0.21, respectively) is similar to those of other GH7 CBHs. The deviations of several loops along the cellulose-binding path between the two molecules in the asymmetric unit indicate higher flexibility than in the less thermostable H. jecorina Cel7A.
Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea.,Momeni MH, Goedegebuur F, Hansson H, Karkehabadi S, Askarieh G, Mitchinson C, Larenas EA, Stahlberg J, Sandgren M Acta Crystallogr D Biol Crystallogr. 2014 Sep;70(Pt 9):2356-66. doi:, 10.1107/S1399004714013844. Epub 2014 Aug 29. PMID:25195749[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Momeni MH, Goedegebuur F, Hansson H, Karkehabadi S, Askarieh G, Mitchinson C, Larenas EA, Stahlberg J, Sandgren M. Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea. Acta Crystallogr D Biol Crystallogr. 2014 Sep;70(Pt 9):2356-66. doi:, 10.1107/S1399004714013844. Epub 2014 Aug 29. PMID:25195749 doi:http://dx.doi.org/10.1107/S1399004714013844
|