|
|
Line 1: |
Line 1: |
| | | |
| ==1.70A resolution structure of apo beta-glycosidase (W33G) from sulfolobus solfataricus== | | ==1.70A resolution structure of apo beta-glycosidase (W33G) from sulfolobus solfataricus== |
- | <StructureSection load='4eam' size='340' side='right' caption='[[4eam]], [[Resolution|resolution]] 1.70Å' scene=''> | + | <StructureSection load='4eam' size='340' side='right'caption='[[4eam]], [[Resolution|resolution]] 1.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4eam]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulso Sulso]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EAM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4EAM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4eam]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus_P2 Saccharolobus solfataricus P2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EAM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4EAM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4ean|4ean]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4eam FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4eam OCA], [https://pdbe.org/4eam PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4eam RCSB], [https://www.ebi.ac.uk/pdbsum/4eam PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4eam ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lacS, SSO3019 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273057 SULSO])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-galactosidase Beta-galactosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.23 3.2.1.23] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4eam FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4eam OCA], [http://pdbe.org/4eam PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4eam RCSB], [http://www.ebi.ac.uk/pdbsum/4eam PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4eam ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [[https://www.uniprot.org/uniprot/BGAL_SACS2 BGAL_SACS2]] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 4eam" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4eam" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Galactosidase 3D structures|Galactosidase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Beta-galactosidase]] | + | [[Category: Large Structures]] |
- | [[Category: Sulso]] | + | [[Category: Saccharolobus solfataricus P2]] |
- | [[Category: Battaile, K P]] | + | [[Category: Battaile KP]] |
- | [[Category: Brunner, L C]] | + | [[Category: Brunner LC]] |
- | [[Category: Budiardjo, S J]] | + | [[Category: Budiardjo SJ]] |
- | [[Category: Deckert, K]] | + | [[Category: Deckert K]] |
- | [[Category: Karanicolas, J]] | + | [[Category: Karanicolas J]] |
- | [[Category: Lovell, S]] | + | [[Category: Lovell S]] |
- | [[Category: Allosteric activation]]
| + | |
- | [[Category: Chemical biology]]
| + | |
- | [[Category: Chemical rescue]]
| + | |
- | [[Category: Glycoside hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Switchable enzyme]]
| + | |
| Structural highlights
Function
[BGAL_SACS2]
Publication Abstract from PubMed
Ligand-dependent activity has been engineered into enzymes for purposes ranging from controlling cell morphology to reprogramming cellular signaling pathways. Where these successes have typically fused a naturally allosteric domain to the enzyme of interest, here we instead demonstrate an approach for designing a de novo allosteric effector site directly into the catalytic domain of an enzyme. This approach is distinct from traditional chemical rescue of enzymes in that it relies on disruption and restoration of structure, rather than active site chemistry, as a means to achieve modulate function. We present two examples, W33G in a beta-glycosidase enzyme (beta-gly) and W492G in a beta-glucuronidase enzyme (beta-gluc), in which we engineer indole-dependent activity into enzymes by removing a buried tryptophan side chain that serves as a buttress for the active site architecture. In both cases, we observe a loss of function, and in both cases we find that the subsequent addition of indole can be used to restore activity. Through a detailed analysis of beta-gly W33G kinetics, we demonstrate that this rescued enzyme is fully functionally equivalent to the corresponding wild-type enzyme. We then present the apo and indole-bound crystal structures of beta-gly W33G, which together establish the structural basis for enzyme inactivation and rescue. Finally, we use this designed switch to modulate beta-glycosidase activity in living cells using indole. Disruption and recovery of protein structure may represent a general technique for introducing allosteric control into enzymes, and thus may serve as a starting point for building a variety of bioswitches and sensors.
Designing Allosteric Control into Enzymes by Chemical Rescue of Structure.,Deckert K, Budiardjo SJ, Brunner LC, Lovell S, Karanicolas J J Am Chem Soc. 2012 Jun 11. PMID:22655749[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Deckert K, Budiardjo SJ, Brunner LC, Lovell S, Karanicolas J. Designing Allosteric Control into Enzymes by Chemical Rescue of Structure. J Am Chem Soc. 2012 Jun 11. PMID:22655749 doi:10.1021/ja301409g
|