|
|
Line 1: |
Line 1: |
| | | |
| ==T4 Lysozyme L99A/M102H with 4-Nitrophenol Bound== | | ==T4 Lysozyme L99A/M102H with 4-Nitrophenol Bound== |
- | <StructureSection load='4ekq' size='340' side='right' caption='[[4ekq]], [[Resolution|resolution]] 1.54Å' scene=''> | + | <StructureSection load='4ekq' size='340' side='right'caption='[[4ekq]], [[Resolution|resolution]] 1.54Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4ekq]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bpt4 Bpt4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EKQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4EKQ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4ekq]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EKQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4EKQ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=NPO:P-NITROPHENOL'>NPO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=NPO:P-NITROPHENOL'>NPO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4e97|4e97]], [[4ekp|4ekp]], [[4ekr|4ekr]], [[4eks|4eks]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ekq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ekq OCA], [https://pdbe.org/4ekq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ekq RCSB], [https://www.ebi.ac.uk/pdbsum/4ekq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ekq ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">E ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10665 BPT4])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ekq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ekq OCA], [http://pdbe.org/4ekq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ekq RCSB], [http://www.ebi.ac.uk/pdbsum/4ekq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ekq ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/LYS_BPT4 LYS_BPT4]] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan. | + | [[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4]] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bpt4]] | + | [[Category: Escherichia virus T4]] |
- | [[Category: Lysozyme]] | + | [[Category: Large Structures]] |
- | [[Category: Merski, M]] | + | [[Category: Merski M]] |
- | [[Category: Shoichet, B K]] | + | [[Category: Shoichet BK]] |
- | [[Category: Alkylation of cys97]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
[ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]
Publication Abstract from PubMed
Synthetic cavitands and protein cavities have been widely studied as models for ligand recognition. Here we investigate the Met102 --> His substitution in the artificial L99A cavity in T4 lysozyme as a Kemp eliminase. The resulting enzyme had k(cat)/K(M) = 0.43 M(-1) s(-1) and a (k(cat)/K(M))/k(uncat) = 10(7) at pH 5.0. The crystal structure of this enzyme was determined at 1.30 A, as were the structures of four complexes of substrate and product analogs. The absence of ordered waters or hydrogen bonding interactions, and the presence of a common catalytic base (His102) in an otherwise hydrophobic, buried cavity, facilitated detailed analysis of the reaction mechanism and its optimization. Subsequent substitutions increased eliminase activity by an additional four-fold. As activity-enhancing substitutions were engineered into the cavity, protein stability decreased, consistent with the stability-function trade-off hypothesis. This and related model cavities may provide templates for studying protein design principles in radically simplified environments.
Engineering a model protein cavity to catalyze the Kemp elimination.,Merski M, Shoichet BK Proc Natl Acad Sci U S A. 2012 Sep 17. PMID:22988064[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
- ↑ Merski M, Shoichet BK. Engineering a model protein cavity to catalyze the Kemp elimination. Proc Natl Acad Sci U S A. 2012 Sep 17. PMID:22988064 doi:http://dx.doi.org/10.1073/pnas.1208076109
|