|
|
Line 1: |
Line 1: |
| | | |
| ==The 1.62A structure of a FRET-optimized Cerulean Fluorescent Protein== | | ==The 1.62A structure of a FRET-optimized Cerulean Fluorescent Protein== |
- | <StructureSection load='4en1' size='340' side='right' caption='[[4en1]], [[Resolution|resolution]] 1.62Å' scene=''> | + | <StructureSection load='4en1' size='340' side='right'caption='[[4en1]], [[Resolution|resolution]] 1.62Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4en1]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EN1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4EN1 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4en1]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EN1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4EN1 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=SWG:2-[(4Z)-2-[(1R)-1-AMINO-2-HYDROXY-ETHYL]-4-(1H-INDOL-3-YLMETHYLIDENE)-5-OXO-IMIDAZOL-1-YL]ETHANOIC+ACID'>SWG</scene></td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SWG:2-[(4Z)-2-[(1R)-1-AMINO-2-HYDROXY-ETHYL]-4-(1H-INDOL-3-YLMETHYLIDENE)-5-OXO-IMIDAZOL-1-YL]ETHANOIC+ACID'>SWG</scene></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4en1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4en1 OCA], [https://pdbe.org/4en1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4en1 RCSB], [https://www.ebi.ac.uk/pdbsum/4en1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4en1 ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4en1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4en1 OCA], [http://pdbe.org/4en1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4en1 RCSB], [http://www.ebi.ac.uk/pdbsum/4en1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4en1 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | + | [[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 20: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Green Fluorescent Protein|Green Fluorescent Protein]] | + | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aeqvi]] | + | [[Category: Aequorea victoria]] |
- | [[Category: Watkins, J L]] | + | [[Category: Large Structures]] |
- | [[Category: Fluorescent protein]] | + | [[Category: Watkins JL]] |
- | [[Category: Gfp-like beta-barrel]]
| + | |
| Structural highlights
Function
[GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Forster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 A resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. beta-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.
The 1.6 A resolution structure of a FRET-optimized Cerulean fluorescent protein.,Watkins JL, Kim H, Markwardt ML, Chen L, Fromme R, Rizzo MA, Wachter RM Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):767-73. doi:, 10.1107/S0907444913001546. Epub 2013 Apr 11. PMID:23633585[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Watkins JL, Kim H, Markwardt ML, Chen L, Fromme R, Rizzo MA, Wachter RM. The 1.6 A resolution structure of a FRET-optimized Cerulean fluorescent protein. Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):767-73. doi:, 10.1107/S0907444913001546. Epub 2013 Apr 11. PMID:23633585 doi:10.1107/S0907444913001546
|