|
|
Line 1: |
Line 1: |
| | | |
| ==EspG structure== | | ==EspG structure== |
- | <StructureSection load='4fma' size='340' side='right' caption='[[4fma]], [[Resolution|resolution]] 2.15Å' scene=''> | + | <StructureSection load='4fma' size='340' side='right'caption='[[4fma]], [[Resolution|resolution]] 2.15Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4fma]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FMA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4FMA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4fma]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FMA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FMA FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4fmb|4fmb]], [[4fmc|4fmc]], [[4fmd|4fmd]], [[4fme|4fme]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fma FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fma OCA], [https://pdbe.org/4fma PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fma RCSB], [https://www.ebi.ac.uk/pdbsum/4fma PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fma ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">espG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4fma FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fma OCA], [http://pdbe.org/4fma PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4fma RCSB], [http://www.ebi.ac.uk/pdbsum/4fma PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4fma ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q5WMC0_ECOLX Q5WMC0_ECOLX] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
- | [[Category: Hu, L]] | + | [[Category: Large Structures]] |
- | [[Category: Shao, F]] | + | [[Category: Hu L]] |
- | [[Category: Zhu, Y]] | + | [[Category: Shao F]] |
- | [[Category: Alpha and beta fold]] | + | [[Category: Zhu Y]] |
- | [[Category: Protein binding]]
| + | |
- | [[Category: Rab1 gap]]
| + | |
- | [[Category: Rab1 gtpase]]
| + | |
| Structural highlights
Function
Q5WMC0_ECOLX
Publication Abstract from PubMed
Rab GTPases are frequent targets of vacuole-living bacterial pathogens for appropriate trafficking of the vacuole. Here we discover that bacterial effectors including VirA from nonvacuole Shigella flexneri and EspG from extracellular Enteropathogenic Escherichia coli (EPEC) harbor TBC-like dual-finger motifs and exhibits potent RabGAP activities. Specific inactivation of Rab1 by VirA/EspG disrupts ER-to-Golgi trafficking. S. flexneri intracellular persistence requires VirA TBC-like GAP activity that mediates bacterial escape from autophagy-mediated host defense. Rab1 inactivation by EspG severely blocks host secretory pathway, resulting in inhibited interleukin-8 secretion from infected cells. Crystal structures of VirA/EspG-Rab1-GDP-aluminum fluoride complexes highlight TBC-like catalytic role for the arginine and glutamine finger residues and reveal a 3D architecture distinct from that of the TBC domain. Structure of Arf6-EspG-Rab1 ternary complex illustrates a pathogenic signaling complex that rewires host Arf signaling to Rab1 inactivation. Structural distinctions of VirA/EspG further predict a possible extensive presence of TBC-like RabGAP effectors in counteracting various host defenses.
Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses.,Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F Cell. 2012 Aug 31;150(5):1029-41. PMID:22939626[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses. Cell. 2012 Aug 31;150(5):1029-41. PMID:22939626 doi:http://dx.doi.org/10.1016/j.cell.2012.06.050
|