|
|
Line 3: |
Line 3: |
| <StructureSection load='4g6r' size='340' side='right'caption='[[4g6r]], [[Resolution|resolution]] 2.83Å' scene=''> | | <StructureSection load='4g6r' size='340' side='right'caption='[[4g6r]], [[Resolution|resolution]] 2.83Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4g6r]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4G6R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4G6R FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4g6r]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4G6R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4G6R FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3DA:3-DEOXYADENOSINE-5-MONOPHOSPHATE'>3DA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=3DA:3-DEOXYADENOSINE-5-MONOPHOSPHATE'>3DA</scene>, <scene name='pdbligand=I:INOSINIC+ACID'>I</scene></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4g6r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g6r OCA], [https://pdbe.org/4g6r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4g6r RCSB], [https://www.ebi.ac.uk/pdbsum/4g6r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4g6r ProSAT]</span></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4g6p|4g6p]], [[4g6s|4g6s]]</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4g6r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g6r OCA], [http://pdbe.org/4g6r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4g6r RCSB], [http://www.ebi.ac.uk/pdbsum/4g6r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4g6r ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 20: |
Line 18: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Ribozyme|Ribozyme]] | + | *[[Ribozyme 3D structures|Ribozyme 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 26: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Jenkins, J L]] | + | [[Category: Jenkins JL]] |
- | [[Category: Krucinska, J]] | + | [[Category: Krucinska J]] |
- | [[Category: Liberman, J A]] | + | [[Category: Liberman JA]] |
- | [[Category: Wedekind, J E]] | + | [[Category: Wedekind JE]] |
- | [[Category: Nucleic acid conformation]]
| + | |
- | [[Category: Rna]]
| + | |
- | [[Category: Structure-activity relationship]]
| + | |
| Structural highlights
Publication Abstract from PubMed
One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pK(a) values for the Ade38 N1 imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pK(a) value of 6.27 +/- 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pK(a), we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pK(a) values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pK(a) > 0.8 log unit relative to the precatalytic state. The agreement of the microscopic and macroscopic pK(a) values and the accompanying structural analysis supports a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity.
A Transition-State Interaction Shifts Nucleobase Ionization toward Neutrality To Facilitate Small Ribozyme Catalysis.,Liberman JA, Guo M, Jenkins JL, Krucinska J, Chen Y, Carey PR, Wedekind JE J Am Chem Soc. 2012 Oct 17;134(41):16933-6. doi: 10.1021/ja3070528. Epub 2012 Oct, 3. PMID:22989273[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Liberman JA, Guo M, Jenkins JL, Krucinska J, Chen Y, Carey PR, Wedekind JE. A Transition-State Interaction Shifts Nucleobase Ionization toward Neutrality To Facilitate Small Ribozyme Catalysis. J Am Chem Soc. 2012 Oct 17;134(41):16933-6. doi: 10.1021/ja3070528. Epub 2012 Oct, 3. PMID:22989273 doi:http://dx.doi.org/10.1021/ja3070528
|