ATPase
From Proteopedia
(Difference between revisions)
Line 6: | Line 6: | ||
* '''V-ATPase''' or Vacuolar-type H+ ATPase couples the energy to proton transport across membranes. For details see [[V-ATPase]];<br /> | * '''V-ATPase''' or Vacuolar-type H+ ATPase couples the energy to proton transport across membranes. For details see [[V-ATPase]];<br /> | ||
* '''A-ATPase''' are found in archaea. For details see [[A-ATP Synthase]];<br /> | * '''A-ATPase''' are found in archaea. For details see [[A-ATP Synthase]];<br /> | ||
- | * '''P-ATPase''' transport ions | + | * '''P-ATPase''' transport ions<ref>PMID:20962537</ref><br /> |
- | * '''E-ATPase''' hydrolyze extracellular ATP. <br /> | + | * '''E-ATPase''' hydrolyze extracellular ATP<ref>PMID:7721538</ref>. <br /> |
* '''MipZ''' is an ATPase which forms a complex with the chromosome partitioning protein ParB and is responsible for the regulation of FtsZ ring formation.<br /> | * '''MipZ''' is an ATPase which forms a complex with the chromosome partitioning protein ParB and is responsible for the regulation of FtsZ ring formation.<br /> | ||
ATPase domains include metal-binding domain (MBD) and nucleotide-binding domain (NBD). For more details see:<br /> | ATPase domains include metal-binding domain (MBD) and nucleotide-binding domain (NBD). For more details see:<br /> |
Revision as of 09:07, 25 October 2022
|
Contents |
3D Printed Physical Model of ATP Synthase
Shown below is a 3D printed physical model of the Respiration Electron Transport Chain. Complex I is colored red, complex II is purple, complex III is green, complex IV is blue and the atp synthase protein is colored orange, yellow and red.
The MSOE Center for BioMolecular Modeling
The MSOE Center for BioMolecular Modeling uses 3D printing technology to create physical models of protein and molecular structures, making the invisible molecular world more tangible and comprehensible. To view more protein structure models, visit our Model Gallery.
3D Structures of ATPase
References
- ↑ Rappas M, Niwa H, Zhang X. Mechanisms of ATPases--a multi-disciplinary approach. Curr Protein Pept Sci. 2004 Apr;5(2):89-105. doi: 10.2174/1389203043486874. PMID:15078220 doi:http://dx.doi.org/10.2174/1389203043486874
- ↑ Neupane P, Bhuju S, Thapa N, Bhattarai HK. ATP Synthase: Structure, Function and Inhibition. Biomol Concepts. 2019 Mar 7;10(1):1-10. doi: 10.1515/bmc-2019-0001. PMID:30888962 doi:http://dx.doi.org/10.1515/bmc-2019-0001
- ↑ Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621-8. PMID:8065448 doi:http://dx.doi.org/10.1038/370621a0
- ↑ Chan H, Babayan V, Blyumin E, Gandhi C, Hak K, Harake D, Kumar K, Lee P, Li TT, Liu HY, Lo TC, Meyer CJ, Stanford S, Zamora KS, Saier MH Jr. The p-type ATPase superfamily. J Mol Microbiol Biotechnol. 2010;19(1-2):5-104. doi: 10.1159/000319588. Epub 2010, Oct 20. PMID:20962537 doi:http://dx.doi.org/10.1159/000319588
- ↑ Plesner L. Ecto-ATPases: identities and functions. Int Rev Cytol. 1995;158:141-214. doi: 10.1016/s0074-7696(08)62487-0. PMID:7721538 doi:http://dx.doi.org/10.1016/s0074-7696(08)62487-0
Proteopedia Page Contributors and Editors (what is this?)
Michal Harel, Wayne Decatur, Alexander Berchansky, Mark Hoelzer, Karsten Theis, Jaime Prilusky