|
|
Line 3: |
Line 3: |
| <StructureSection load='4hcq' size='340' side='right'caption='[[4hcq]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='4hcq' size='340' side='right'caption='[[4hcq]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4hcq]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_tuberculosis"_(zopf_1883)_klein_1884 "bacillus tuberculosis" (zopf 1883) klein 1884]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HCQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4HCQ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4hcq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HCQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4HCQ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=GN1:2-(ACETYLAMINO)-2-DEOXY-1-O-PHOSPHONO-ALPHA-D-GLUCOPYRANOSE'>GN1</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=GN1:2-(ACETYLAMINO)-2-DEOXY-1-O-PHOSPHONO-ALPHA-D-GLUCOPYRANOSE'>GN1</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">glmU, Rv1018c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1773 "Bacillus tuberculosis" (Zopf 1883) Klein 1884])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4hcq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hcq OCA], [https://pdbe.org/4hcq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4hcq RCSB], [https://www.ebi.ac.uk/pdbsum/4hcq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4hcq ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4hcq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hcq OCA], [http://pdbe.org/4hcq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4hcq RCSB], [http://www.ebi.ac.uk/pdbsum/4hcq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4hcq ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GLMU_MYCTU GLMU_MYCTU]] Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain.<ref>PMID:19237750</ref> <ref>PMID:19121323</ref> | + | [https://www.uniprot.org/uniprot/GLMU_MYCTU GLMU_MYCTU] Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain.<ref>PMID:19237750</ref> <ref>PMID:19121323</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 4hcq" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4hcq" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[N-acetylglucosamine-1-phosphate uridyltransferase|N-acetylglucosamine-1-phosphate uridyltransferase]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 24: |
Line 26: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Jagtap, P K.A]] | + | [[Category: Mycobacterium tuberculosis]] |
- | [[Category: Verma, S K]] | + | [[Category: Jagtap PKA]] |
- | [[Category: Vithani, N]] | + | [[Category: Verma SK]] |
- | [[Category: Acetyltransferase]] | + | [[Category: Vithani N]] |
- | [[Category: Acyltransferase]]
| + | |
- | [[Category: Bifunctional]]
| + | |
- | [[Category: Cell shape]]
| + | |
- | [[Category: Cell wall biogenesis/degradation]]
| + | |
- | [[Category: Left-handed-beta-helix]]
| + | |
- | [[Category: Magnesium]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Multifunctional enzyme]]
| + | |
- | [[Category: Nucleotidyltransferase]]
| + | |
- | [[Category: Peptidoglycan synthesis]]
| + | |
- | [[Category: Pyrophosphorylase]]
| + | |
- | [[Category: Rossmann-like fold]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
GLMU_MYCTU Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain.[1] [2]
Publication Abstract from PubMed
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU), exclusive to prokaryotes, is a bifunctional enzyme that synthesizes UDP-GlcNAc-an important component of the cell wall of many microorganisms. Uridyltransfer, one of the reactions it catalyzes, involves binding GlcNAc-1-P, UTP and Mg(2+) ions; however, whether one or two ions catalyze this reaction remains ambiguous. Here, we resolve this using biochemical and crystallographic studies on GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) and identify a two-metal-ion mechanism (mechanism-B). In contrast to well-established two-metal mechanism (mechanism-A) for enzymes acting on nucleic acids, mechanism-B is distinct in the way the two Mg(2+) ions (Mg(2+)A and Mg(2+)B) are positioned and stabilized. Further, attempts to delineate the roles of the metal ions in substrate stabilization, nucleophile activation and transition-state stabilization are presented. Interestingly, a detailed analysis of the available structures of sugar nucleotidyl transferases (SNTs) suggests that they too would utilize mechanism-B rather than mechanism-A. Based on this, SNTs could be classified into Group-I, which employs the two-metal mechanism-B as in GlmU, and Group-II that employs a variant one-metal mechanism-B, wherein the role of Mg(2+)A is substituted by a conserved lysine. Strikingly, eukaryotic SNTs appear confined to Group-II. Recognizing these differences may be important in the design of selective inhibitors against microbial nucleotidyl transferases.
Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases.,Jagtap PK, Verma SK, Vithani N, Bais VS, Prakash B J Mol Biol. 2013 May 27;425(10):1745-59. doi: 10.1016/j.jmb.2013.02.019. Epub, 2013 Feb 26. PMID:23485416[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Zhang Z, Bulloch EM, Bunker RD, Baker EN, Squire CJ. Structure and function of GlmU from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2009 Mar;65(Pt 3):275-83. Epub 2009, Feb 20. PMID:19237750 doi:10.1107/S0907444909001036
- ↑ Parikh A, Verma SK, Khan S, Prakash B, Nandicoori VK. PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol. 2009 Feb 20;386(2):451-64. Epub 2008 Dec 24. PMID:19121323 doi:10.1016/j.jmb.2008.12.031
- ↑ Jagtap PK, Verma SK, Vithani N, Bais VS, Prakash B. Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases. J Mol Biol. 2013 May 27;425(10):1745-59. doi: 10.1016/j.jmb.2013.02.019. Epub, 2013 Feb 26. PMID:23485416 doi:10.1016/j.jmb.2013.02.019
|