Glycolysis Enzymes

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 26: Line 26:
*[[Aldolase]]
*[[Aldolase]]
-
[[Austin_Drake_Sandbox|Aldolase]] catalyzes the retro-aldol cleavage of <scene name='39/392339/Cv1/2'>fructose 1,6-bisphosphate</scene> into two three-carbon phosphosugars, <scene name='39/392339/Cv1/3'>dihydroxyacetone phosphate</scene> and <scene name='39/392339/Cv/10'>glyceraldehyde-3-phosphate</scene>.
+
[[Austin_Drake_Sandbox|Aldolase]] catalyzes the retro-aldol cleavage of <scene name='39/392339/Cv1/2'>fructose 1,6-bisphosphate</scene> into two three-carbon phosphosugars, <scene name='39/392339/Cv1/3'>dihydroxyacetone phosphate</scene> and <scene name='39/392339/Cv1/4'>glyceraldehyde-3-phosphate</scene>.
-
The reaction is an aldol cleavage, or otherwise termed, retro aldo condensation. Catalysis occurs first when the nucleophilic ε-amine group of Lys229 attacks the carbonyl carbon of the substrate (FBP) in its open-ring state, pushing an electron pair to the oxygen of the carbonyl. The oxygen is protonated and leaves as water as a protonated <scene name='Austin_Drake_Sandbox/Schiff_base/2'>Schiff base</scene> is produced (an imine resulting from a ketone and amine) with the open-ring form of FBP
+
The reaction is an aldol cleavage, or otherwise termed, retro aldo condensation. Catalysis occurs first when the nucleophilic ε-amine group of Lys229 attacks the carbonyl carbon of the substrate (FBP) in its open-ring state, pushing an electron pair to the oxygen of the carbonyl. The oxygen is protonated and leaves as water as a protonated <scene name='Austin_Drake_Sandbox/Schiff_base/2'>Schiff base</scene> is produced (an imine resulting from a ketone and amine) with the open-ring form of FBP
'''Step 5: Triose Phosphate Isomerase'''
'''Step 5: Triose Phosphate Isomerase'''
Line 38: Line 38:
'''Step 6: Glyceraldehyde-3-phosphate Dehydrogenase'''
'''Step 6: Glyceraldehyde-3-phosphate Dehydrogenase'''
-
First, [[Nathan_Line_sandbox_3|glyceraldehyde-3-phosphate dehydrogenase]] oxidizes <scene name='39/392339/Cv/11'>glyceraldehyde-3-phosphate</scene>, transferring a hydride to NAD+, generating NADH and H+. A phosphate ion is used instead of a water molecule, leading to the formation of <scene name='39/392339/Cv/12'>1,3-bisphosphoglycerate</scene>, a high energy compound.
+
First, [[Nathan_Line_sandbox_3|glyceraldehyde-3-phosphate dehydrogenase]] oxidizes <scene name='39/392339/Cv1/4'>glyceraldehyde-3-phosphate</scene>, transferring a hydride to NAD+, generating NADH and H+. A phosphate ion is used instead of a water molecule, leading to the formation of <scene name='39/392339/Cv/12'>1,3-bisphosphoglycerate</scene>, a high energy compound.
'''Step 7: Phosphoglycerate kinase'''
'''Step 7: Phosphoglycerate kinase'''

Revision as of 15:18, 9 November 2022

Hexokinase I complex with ATP analog, glucose, glucose-phosphate and Mg+2 ion (PDB code 1qha)

Drag the structure with the mouse to rotate

References

  1. Lee JH, Chang KZ, Patel V, Jeffery CJ. Crystal structure of rabbit phosphoglucose isomerase complexed with its substrate D-fructose 6-phosphate. Biochemistry. 2001 Jul 3;40(26):7799-805. PMID:11425306

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Ann Taylor, David Canner, Jaime Prilusky

Personal tools