|
|
| Line 3: |
Line 3: |
| | <StructureSection load='4j2m' size='340' side='right'caption='[[4j2m]], [[Resolution|resolution]] 1.79Å' scene=''> | | <StructureSection load='4j2m' size='340' side='right'caption='[[4j2m]], [[Resolution|resolution]] 1.79Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4j2m]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"micrococcus_radiodurans"_raj_et_al._1960 "micrococcus radiodurans" raj et al. 1960]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J2M OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4J2M FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4j2m]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Deinococcus_radiodurans Deinococcus radiodurans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J2M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4J2M FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr> |
| - | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4j2m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j2m OCA], [https://pdbe.org/4j2m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4j2m RCSB], [https://www.ebi.ac.uk/pdbsum/4j2m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4j2m ProSAT]</span></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4j35|4j35]]</td></tr>
| + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4j2m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j2m OCA], [http://pdbe.org/4j2m PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4j2m RCSB], [http://www.ebi.ac.uk/pdbsum/4j2m PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4j2m ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/Q9RVU2_DEIRA Q9RVU2_DEIRA] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 22: |
Line 22: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Micrococcus radiodurans raj et al. 1960]] | + | [[Category: Deinococcus radiodurans]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Meier, M]] | + | [[Category: Meier M]] |
| - | [[Category: Rajendran, C]] | + | [[Category: Rajendran C]] |
| - | [[Category: Reinhard, S]] | + | [[Category: Reinhard S]] |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: Organophosphate hydrolysis activity]]
| + | |
| Structural highlights
Function
Q9RVU2_DEIRA
Publication Abstract from PubMed
Rapid evolution of enzymes provides unique molecular insights into the remarkable adaptability of proteins and helps to elucidate the relationship between amino acid sequence, structure and function. We interrogated the evolution of the phosphotriesterase from Pseudomonas diminuta (PdPTE), which hydrolyzes synthetic organophosphates with remarkable catalytic efficiency. PTE is thought to be an evolutionarily "young" enzyme and it has been postulated that it has evolved from members of the phosphotriesterase-like lactonase (PLL) family that show promiscuous organophosphate degrading activity. Starting from a weakly promiscuous PLL scaffold (Dr0930 from Deinococcus radiodurans), we designed an extremely efficient organophosphate hydrolase (OPH) with broad substrate specificity using rational and random mutagenesis in combination with in vitro activity screening. The OPH activity for seven organophosphate substrates was simultaneously enhanced by up to five orders of magnitude, achieving absolute values of catalytic efficiencies up to 106 M-1 s-1. Structural and computational analyses identified the molecular basis for the enhanced OPH activity of the engineered PLL variants and demonstrated that OPH catalysis in PdPTE and the engineered PLL differ significantly in the mode of substrate binding.
Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template.,Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Hoecker B, Sterner R, Raushel FM J Am Chem Soc. 2013 Jul 9. PMID:23837603[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Hoecker B, Sterner R, Raushel FM. Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template. J Am Chem Soc. 2013 Jul 9. PMID:23837603 doi:10.1021/ja405911h
|