|
|
Line 1: |
Line 1: |
| | | |
| ==The R state structure of E. coli ATCase with ATP bound== | | ==The R state structure of E. coli ATCase with ATP bound== |
- | <StructureSection load='4kgv' size='340' side='right' caption='[[4kgv]], [[Resolution|resolution]] 2.10Å' scene=''> | + | <StructureSection load='4kgv' size='340' side='right'caption='[[4kgv]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4kgv]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoko Ecoko]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KGV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4KGV FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4kgv]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_KO11FL Escherichia coli KO11FL]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KGV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4KGV FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=PAL:N-(PHOSPHONACETYL)-L-ASPARTIC+ACID'>PAL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=PAL:N-(PHOSPHONACETYL)-L-ASPARTIC+ACID'>PAL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4kgx|4kgx]], [[4kgz|4kgz]], [[4kh0|4kh0]], [[4kh1|4kh1]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4kgv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kgv OCA], [https://pdbe.org/4kgv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4kgv RCSB], [https://www.ebi.ac.uk/pdbsum/4kgv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4kgv ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pyrB, EKO11_4066, KO11_22860 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=595495 ECOKO]), pyrI, EKO11_4067, KO11_22855 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=595495 ECOKO])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aspartate_carbamoyltransferase Aspartate carbamoyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.3.2 2.1.3.2] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4kgv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kgv OCA], [http://pdbe.org/4kgv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4kgv RCSB], [http://www.ebi.ac.uk/pdbsum/4kgv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4kgv ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
- | == Function == | |
- | [[http://www.uniprot.org/uniprot/E8Y329_ECOKO E8Y329_ECOKO]] Involved in allosteric regulation of aspartate carbamoyltransferase (By similarity).[HAMAP-Rule:MF_00002] | |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 18: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Aspartate carbamoyltransferase|Aspartate carbamoyltransferase]] | + | *[[Aspartate carbamoyltransferase 3D structures|Aspartate carbamoyltransferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aspartate carbamoyltransferase]] | + | [[Category: Escherichia coli KO11FL]] |
- | [[Category: Ecoko]] | + | [[Category: Large Structures]] |
- | [[Category: Cockrell, G M]] | + | [[Category: Cockrell GM]] |
- | [[Category: Guo, W]] | + | [[Category: Guo W]] |
- | [[Category: Kantrowitz, E R]] | + | [[Category: Kantrowitz ER]] |
- | [[Category: Peterson, A W]] | + | [[Category: Peterson AW]] |
- | [[Category: Zheng, Y]] | + | [[Category: Zheng Y]] |
- | [[Category: Allostery]]
| + | |
- | [[Category: Competing pathway]]
| + | |
- | [[Category: Feedback inhibition]]
| + | |
- | [[Category: Product activation]]
| + | |
- | [[Category: Pyrimidine nucleotide biosynthesis]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Publication Abstract from PubMed
For nearly 60 years, the ATP activation and the CTP inhibition of Escherichia coli aspartate transcarbamoylase (ATCase) has been the textbook example of allosteric regulation. We present kinetic data and five X-ray structures determined in the absence and presence of a Mg(2+) concentration within the physiological range. In the presence of 2 mM divalent cations (Mg(2+), Ca(2+), Zn(2+)), CTP does not significantly inhibit the enzyme, while the allosteric activation by ATP is enhanced. The data suggest that the actual allosteric inhibitor of ATCase in vivo is the combination of CTP, UTP, and a divalent cation, and the actual allosteric activator is a divalent cation with ATP or ATP and GTP. The structural data reveals that two NTPs can bind to each allosteric site with a divalent cation acting as a bridge between the triphosphates. Thus, the regulation of ATCase is far more complex than previously believed and calls many previous studies into question. The X-ray structures reveal that the catalytic chains undergo essentially no alternations; however, several regions of the regulatory chains undergo significant structural changes. Most significant is that the N-terminal region of the regulatory chains exists in different conformations in the allosterically activated and inhibited forms of the enzyme. Here, a new model of allosteric regulation is proposed.
New Paradigm for Allosteric Regulation of Escherichia coli Aspartate Transcarbamoylase.,Cockrell GM, Zheng Y, Guo W, Peterson AW, Truong JK, Kantrowitz ER Biochemistry. 2013 Nov 12;52(45):8036-47. doi: 10.1021/bi401205n. Epub 2013 Oct, 31. PMID:24138583[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Cockrell GM, Zheng Y, Guo W, Peterson AW, Truong JK, Kantrowitz ER. New Paradigm for Allosteric Regulation of Escherichia coli Aspartate Transcarbamoylase. Biochemistry. 2013 Nov 12;52(45):8036-47. doi: 10.1021/bi401205n. Epub 2013 Oct, 31. PMID:24138583 doi:http://dx.doi.org/10.1021/bi401205n
|