Sandbox Reserved 1733

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 15: Line 15:
== Enzyme Mechanism ==
== Enzyme Mechanism ==
-
Aspartic Acids 96 and 85 play a very important role in the function of bacteriorhodopsin.<ref> Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. ''Annu. Rev. Biophys. Biomol. Struct.'' '''1999''', 28, 367-399.</ref> When substituted into glutamine, less than 10% of normal function will occur.<ref>Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. ''Proc. Natl. Acad. Sci.'' USA. '''1988''', 85 (12), 4148–4152.</ref> If they are substituted or a mutation occurs, normal processes of bacteriorhodopsin will not occur due to the slow photocycle. Aspartic acid 85 is responsible for proton release for the bacteriorhodopsin. Aspartic acid 96 is responsible for the deprotonation and protonation of the Schiff Base.<ref>Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. ''EMBO''. '''1989''', 8 (6), 1657-1663</ref>
+
Aspartic Acids 96 and 85 play a very important role in the function of bacteriorhodopsin.<ref> Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. ''Annu. Rev. Biophys. Biomol. Struct.'' '''1999''', 28, 367-399.</ref> When substituted into glutamine, less than 10% of normal function will occur.<ref>Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. ''Proc. Natl. Acad. Sci.'' USA. '''1988''', 85 (12), 4148–4152.</ref> If they are substituted or a mutation occurs, normal processes of bacteriorhodopsin will not occur due to the slow photocycle. Aspartic acid 85 is responsible for proton release for the bacteriorhodopsin. Aspartic acid 96 is responsible for the deprotonation and protonation of the Schiff Base.<ref>Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. ''EMBO''. '''1989''', 8 (6), 1657-1663</ref> The Schiff Base is a catalytic ligand that is equidistant between Aspartic acids 85 and 212 and it contains three water molecules. It is a petagonal cluster and protonated, counteracting the negative charge of the Aspartic acids and has one oxygen from each amino acid. <ref>Shibata, M.; Tanimoto, T.; Kandori, H. Water Molecules in the Schiff Base Molecules. J. Am. Chem. Soc. 2003 125 (44) 13312–13313
 +
</ref>
 +
 
== Interesting Findings ==
== Interesting Findings ==

Revision as of 22:53, 6 December 2022

3D structure of Bacteriorhodopsin

Drag the structure with the mouse to rotate

References

  1. Khorana, H. G.; Gerber, G. E.; Herlihy, W. C.; Gray, C. H.; Anderegg, R. J.; Nihei, K.; Biemann, K. Amino acid sequence of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 1997, 76 (10), 5046-5050.
  2. Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High resolution x-ray structure of an early intermediate in the bacteriorhodopsin photocycle. RSCB PDB. 1999, 401 (6755), 822-826.
  3. Ovchinnikov, Y. A.; Abdulaev, N. G.; Feigina, M. Y.; Kiselev, A. V.; Lobanov, N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. ICHB. 1979, 100 (2), 219-224.
  4. Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. Isr. J. Chem. 1995, 35 (3-4), 365-385.
  5. Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. IBCH. USSR 1982, 148 (2), 179-191.
  6. Noort, J. Unraveling bacteriorhodopsin. Biophys. J. 2005, 88 (2), 763-764.
  7. Stoeckenius, W.; Bogomolni, R. A. Bacteriorhodopsin and related pigments of halobacteria. Ann. Rev. Biochem. 1982, 52, 587-616.
  8. Kouyama, T.; Kinosita, K.; Ikegami, A. Structure and Function of Bacteriorhodopsin. Adv. Biophys. 1988, 24, 123–175.
  9. Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367-399.
  10. Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. Proc. Natl. Acad. Sci. USA. 1988, 85 (12), 4148–4152.
  11. Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO. 1989, 8 (6), 1657-1663
  12. Shibata, M.; Tanimoto, T.; Kandori, H. Water Molecules in the Schiff Base Molecules. J. Am. Chem. Soc. 2003 125 (44) 13312–13313
  13. Wong, C. W.; Ko, L. N.; Huang, H. J.; Yang, C. S.; Hsu, S. H. Engineered bacteriorhodopsin may induce lung cancer cell cycle arrest and suppress their proliferation and migration. MDPI. 2021, 26 (23).
Personal tools