Sandbox Reserved 1733

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
<Structure load='3HAN' size='350' frame='true' align='right' caption='Subunit of Bacteriorhodopsin; Polypeptide Polymer' scene='Insert optional scene name here' />
<Structure load='3HAN' size='350' frame='true' align='right' caption='Subunit of Bacteriorhodopsin; Polypeptide Polymer' scene='Insert optional scene name here' />
==Structure==
==Structure==
-
Bacteriorhodopsin is an integral membrane protein that functions as a proton pump. It has a primary structure that includes 248 amino acids with a molecular weight of 26,800.58 Da.<ref>Khorana, H. G.; Gerber, G. E.; Herlihy, W. C.; Gray, C. H.; Anderegg, R. J.; Nihei, K.; Biemann, K. Amino acid sequence of bacteriorhodopsin. ''Proc. Natl. Acad. Sci.'' USA '''1997''', 76 (10), 5046-5050.</ref>The secondary structure is seen in the seven alpha helices and two beta strands that are antiparallel. The alpha helices contain specific charged polar sides that help carry the proton through the middle of the protein's hydrophilic membrane. The tertiary structure includes three domains and an alpha barrel motif. <ref>Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High resolution x-ray structure of an early intermediate in the bacteriorhodopsin photocycle. ''RSCB PDB''. '''1999''', 401 (6755), 822-826.</ref> The quaternary structure has C3 symmetry and is a homotrimer with three subunits.<ref>Ovchinnikov, Y. A.; Abdulaev, N. G.; Feigina, M. Y.; Kiselev, A. V.; Lobanov, N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. ''ICHB''. '''1979''', 100 (2), 219-224.</ref>
+
Bacteriorhodopsin is an integral membrane protein that functions as a proton pump. It has a primary structure that includes 248 amino acids with a molecular weight of 26,800.58 Da.<ref>Khorana, H. G.; Gerber, G. E.; Herlihy, W. C.; Gray, C. H.; Anderegg, R. J.; Nihei, K.; Biemann, K. Amino acid sequence of bacteriorhodopsin. ''Proc. Natl. Acad. Sci.'' USA '''1997''', 76 (10), 5046-5050.</ref>The secondary structure is seen in the seven alpha helices and two beta strands that are antiparallel. The alpha helices contain specific charged polar sides that help carry the proton through the middle of the protein's hydrophilic membrane <ref>Luecke, H.; Schobert, B.; Ricther, H. T.; Cartailler, J. P.; Lanyi, J. Structure of Bacteriorhodopsin at 1.55 Å Resolution. ''JMBI''. '''1999''', 291 (4), 899-911.</ref>. The tertiary structure includes three domains and an alpha barrel motif. <ref>Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High resolution x-ray structure of an early intermediate in the bacteriorhodopsin photocycle. ''RSCB PDB''. '''1999''', 401 (6755), 822-826.</ref> The quaternary structure has C3 symmetry and is a homotrimer with three subunits.<ref>Ovchinnikov, Y. A.; Abdulaev, N. G.; Feigina, M. Y.; Kiselev, A. V.; Lobanov, N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. ''ICHB''. '''1979''', 100 (2), 219-224.</ref>
== Function ==
== Function ==
-
Bacteriorhodopsin functions as a proton pump that transports H+ across the gradient and is driven by green light.<ref>Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. ''Isr. J. Chem''. '''1995''', 35 (3-4), 365-385.</ref> Hydrophobic lipid tails are able to interact with proteins' rigid surfaces while keeping a hydrophilic center that allows the movement of protons. The protons are used to create ATP which is a vital part of the haloarchaea's survival. Once bacteriorhodopsin absorbs a photon, catalysis is triggered, causing a conformational shift from trans to cis, a release of a proton, and a transfer of a proton. The catalytic cycle includes 6 steps of isomerization, accessibility change, and ion transport. <ref>Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. ''IBCH.'' USSR '''1982''', 148 (2), 179-191.</ref> <ref>Noort, J. Unraveling bacteriorhodopsin. ''Biophys. J.'' '''2005''', 88 (2), 763-764.</ref>Bacteriorhodopsin is a type three membrane protein. The side chains of the amino acids are hydrophobic, causing a highly hydrophobic membrane protein pump. Hydrophobia is very common in membrane proteins.
+
Bacteriorhodopsin functions as a proton pump that transports H+ across the gradient and is driven by green light.<ref>Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. ''Isr. J. Chem''. '''1995''', 35 (3-4), 365-385.</ref> Hydrophobic lipid tails are able to interact with proteins' rigid surfaces while keeping a hydrophilic center that allows the movement of protons.<ref>Belrhalo, H.; Nollert, P.; Royant, A.; Menzel, C.; Rosenbusch, J.; Landau, E.; Ebay-Peyroula, E. Protein, Lipid and Water Organization in Bacteriorhodopsin Crystals: A Molecular View of the Purple Membrane at 1.9 Å Resolution. ''Struc.'' '''1999''', 7 (8), 909-917.</ref> The protons are used to create ATP which is a vital part of the haloarchaea's survival. Once bacteriorhodopsin absorbs a photon, catalysis is triggered, causing a conformational shift from trans to cis, a release of a proton, and a transfer of a proton. The catalytic cycle includes 6 steps of isomerization, accessibility change, and ion transport. <ref>Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. ''IBCH.'' USSR '''1982''', 148 (2), 179-191.</ref> <ref>Noort, J. Unraveling bacteriorhodopsin. ''Biophys. J.'' '''2005''', 88 (2), 763-764.</ref>Bacteriorhodopsin is a type three membrane protein. The side chains of the amino acids are hydrophobic, causing a highly hydrophobic membrane protein pump. Hydrophobia is very common in membrane proteins.
== Relevance ==
== Relevance ==

Revision as of 23:15, 6 December 2022

3D structure of Bacteriorhodopsin

Drag the structure with the mouse to rotate

References

  1. Khorana, H. G.; Gerber, G. E.; Herlihy, W. C.; Gray, C. H.; Anderegg, R. J.; Nihei, K.; Biemann, K. Amino acid sequence of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 1997, 76 (10), 5046-5050.
  2. Luecke, H.; Schobert, B.; Ricther, H. T.; Cartailler, J. P.; Lanyi, J. Structure of Bacteriorhodopsin at 1.55 Å Resolution. JMBI. 1999, 291 (4), 899-911.
  3. Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High resolution x-ray structure of an early intermediate in the bacteriorhodopsin photocycle. RSCB PDB. 1999, 401 (6755), 822-826.
  4. Ovchinnikov, Y. A.; Abdulaev, N. G.; Feigina, M. Y.; Kiselev, A. V.; Lobanov, N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. ICHB. 1979, 100 (2), 219-224.
  5. Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. Isr. J. Chem. 1995, 35 (3-4), 365-385.
  6. Belrhalo, H.; Nollert, P.; Royant, A.; Menzel, C.; Rosenbusch, J.; Landau, E.; Ebay-Peyroula, E. Protein, Lipid and Water Organization in Bacteriorhodopsin Crystals: A Molecular View of the Purple Membrane at 1.9 Å Resolution. Struc. 1999, 7 (8), 909-917.
  7. Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. IBCH. USSR 1982, 148 (2), 179-191.
  8. Noort, J. Unraveling bacteriorhodopsin. Biophys. J. 2005, 88 (2), 763-764.
  9. Stoeckenius, W.; Bogomolni, R. A. Bacteriorhodopsin and related pigments of halobacteria. Ann. Rev. Biochem. 1982, 52, 587-616.
  10. Kouyama, T.; Kinosita, K.; Ikegami, A. Structure and Function of Bacteriorhodopsin. Adv. Biophys. 1988, 24, 123–175.
  11. Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367-399.
  12. Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. Proc. Natl. Acad. Sci. USA. 1988, 85 (12), 4148–4152.
  13. Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO. 1989, 8 (6), 1657-1663
  14. Shibata, M.; Tanimoto, T.; Kandori, H. Water Molecules in the Schiff Base Molecules. J. Am. Chem. Soc. 2003 125 (44) 13312–13313
  15. Wong, C. W.; Ko, L. N.; Huang, H. J.; Yang, C. S.; Hsu, S. H. Engineered bacteriorhodopsin may induce lung cancer cell cycle arrest and suppress their proliferation and migration. MDPI. 2021, 26 (23).
Personal tools