Sandbox Reserved 1736
From Proteopedia
(Difference between revisions)
Line 12: | Line 12: | ||
<ref>Guruprasad, L. Human Sars-CoV‐2 Spike Protein Mutations. Proteins: Structure, Function, and Bioinformatics '''2021''', 89 (5), 569–576.</ref> | <ref>Guruprasad, L. Human Sars-CoV‐2 Spike Protein Mutations. Proteins: Structure, Function, and Bioinformatics '''2021''', 89 (5), 569–576.</ref> | ||
== Structural Highlights == | == Structural Highlights == | ||
- | The SARS-CoV-2 spike protein has a primary, secondary, tertiary, and quaternary structure. The motif present in the SARS-CoV-2 spike protein is the beta sandwich– where there are 1273 amino acids. Beta sandwiches are characterized by having two opposed <scene name='91/919045/Sheet_sars-cov-2_spike_protein/3'>beta sheets</scene> | + | The SARS-CoV-2 spike protein has a primary, secondary, tertiary, and quaternary structure. The motif present in the SARS-CoV-2 spike protein is the beta sandwich– where there are 1273 amino acids. Beta sandwiches are characterized by having two opposed <scene name='91/919045/Sheet_sars-cov-2_spike_protein/3'>beta sheets</scene>. Both the <scene name='91/919045/S1_sars-cov-2_spike_protein/1'>S1</scene> and <scene name='91/919045/S2_sars-cov-2_spike_protein/1'>S2</scene> subunits are the last two regions that manage the processes of the receptor binding and the membrane fusing. <ref>Berger, I.; Schaffitzel, C. The Sars-COV-2 Spike Protein: Balancing Stability and Infectivity. Cell Research 2020, 30 (12), 1059–1060.</ref> In the S1 subunit, it is composed of an N-terminal, receptor-binding domain, and the fusion of peptides. Heptapeptide 1 and 2, TM domain, and cytoplasmic domain fusion are the reason for viral fusion and entry. In the S2 subunit, the S-protein trimers have a shape of a crown-like looking halo that is on the surrounding area of the viral particle. Because of the structure of the coronavirus S protein monomers this causes both the S1 and S2 subunits to be formulated into a “bulbous head and stalk region”. The 3-D form of the protein plays a role in receptor recognition cell membrane fusion process. The Angiotensin-converting enzyme 2 is recognized and bound by the receptor-binding domain of the S1 subunit. Through the two-heptad repeat domain, the S2 subunit facilitates viral cell membrane fusion, resulting in a six <scene name='91/919045/Helix_sars-cov-2_spike_protein/4'>helical</scene> bundle. <ref name="huang">Huang, Y.; Yang, C.; Xu, X.-feng; Xu, W.; Liu, S.-wen. Structural and Functional Properties of SARS-COV-2 Spike Protein: Potential Antivirus Drug Development for Covid-19. Acta Pharmacologica Sinica '''2020''', 41 (9), 1141–1149.</ref> |
The quaternary structures are both <scene name='91/919045/Dimer/1'>dimers</scene> and <scene name='91/919045/Trimer/1'>trimers</scene> and the symmetry is asymmetric C3.<ref>Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.-Y.; Katsamba, P. S.; Sampson, J. M.; Schön, A.; Bimela, J.; Boyington, J. C.; Nazzari, A.; Olia, A. S.; Shi, W.; Sastry, M.; Stephens, T.; Stuckey, J.; Teng, I.-T.; Wang, P.; Wang, S.; Zhang, B.; Friesner, R. A.; Ho, D. D.; Mascola, J. R.; Shapiro, L.; Kwong, P. D. Cryo-EM Structures of SARS-COV-2 Spike without and with Ace2 Reveal a Ph-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host & Microbe '''2020''', 28 (6).</ref> | The quaternary structures are both <scene name='91/919045/Dimer/1'>dimers</scene> and <scene name='91/919045/Trimer/1'>trimers</scene> and the symmetry is asymmetric C3.<ref>Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.-Y.; Katsamba, P. S.; Sampson, J. M.; Schön, A.; Bimela, J.; Boyington, J. C.; Nazzari, A.; Olia, A. S.; Shi, W.; Sastry, M.; Stephens, T.; Stuckey, J.; Teng, I.-T.; Wang, P.; Wang, S.; Zhang, B.; Friesner, R. A.; Ho, D. D.; Mascola, J. R.; Shapiro, L.; Kwong, P. D. Cryo-EM Structures of SARS-COV-2 Spike without and with Ace2 Reveal a Ph-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host & Microbe '''2020''', 28 (6).</ref> | ||
Revision as of 23:57, 8 December 2022
Structure
|
References
- ↑ Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J. C. C.; Muecksch, F.; Rutkowska, M.; Hoffmann, H.-H.; Michailidis, E.; Gaebler, C.; Agudelo, M.; Cho, A.; Wang, Z.; Gazumyan, A.; Cipolla, M.; Luchsinger, L.; Hillyer, C. D.; Caskey, M.; Robbiani, D. F.; Rice, C. M.; Nussenzweig, M. C.; Hatziioannou, T.; Bieniasz, P. D. Escape from Neutralizing Antibodies by SARS-COV-2 Spike Protein Variants. eLife 2020, 9.
- ↑ 2.0 2.1 Bangaru, S.; Ozorowski, G.; Turner, H. L.; Antanasijevic, A.; Huang, D.; Wang, X.; Torres, J. L.; Diedrich, J. K.; Tian, J.-H.; Portnoff, A. D.; Patel, N.; Massare, M. J.; Yates, J. R.; Nemazee, D.; Paulson, J. C.; Glenn, G.; Smith, G.; Ward, A. B. Structural Analysis of Full-Length SARS-COV-2 Spike Protein from an Advanced Vaccine Candidate. Science 2020, 370 (6520), 1089–1094.
- ↑ Xia, X. Domains and Functions of Spike Protein in SARS-COV-2 in the Context of Vaccine Design. Viruses 2021, 13(1).
- ↑ 4.0 4.1 Huang, Y.; Yang, C.; Xu, X.-feng; Xu, W.; Liu, S.-wen. Structural and Functional Properties of SARS-COV-2 Spike Protein: Potential Antivirus Drug Development for Covid-19. Acta Pharmacologica Sinica 2020, 41 (9), 1141–1149.
- ↑ Suzuki, Y. J.; Gychka, S. G. SARS-COV-2 Spike Protein Elicits Cell Signaling in Human Host Cells: Implications for Possible Consequences of Covid-19 Vaccines. Vaccines 2021, 9 (1), 36.
- ↑ Jackson, C. B.; Zhang, L.; Farzan, M.; Choe, H. Functional Importance of the D614G Mutation in the SARS-COV-2 Spike Protein. Biochemical and Biophysical Research Communications 2021, 538, 108–115.
- ↑ Guruprasad, L. Human Sars-CoV‐2 Spike Protein Mutations. Proteins: Structure, Function, and Bioinformatics 2021, 89 (5), 569–576.
- ↑ Berger, I.; Schaffitzel, C. The Sars-COV-2 Spike Protein: Balancing Stability and Infectivity. Cell Research 2020, 30 (12), 1059–1060.
- ↑ Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.-Y.; Katsamba, P. S.; Sampson, J. M.; Schön, A.; Bimela, J.; Boyington, J. C.; Nazzari, A.; Olia, A. S.; Shi, W.; Sastry, M.; Stephens, T.; Stuckey, J.; Teng, I.-T.; Wang, P.; Wang, S.; Zhang, B.; Friesner, R. A.; Ho, D. D.; Mascola, J. R.; Shapiro, L.; Kwong, P. D. Cryo-EM Structures of SARS-COV-2 Spike without and with Ace2 Reveal a Ph-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host & Microbe 2020, 28 (6).