Sandbox Reserved 1760
From Proteopedia
(Difference between revisions)
Line 6: | Line 6: | ||
== Function of your protein == | == Function of your protein == | ||
- | The function of hOAT is to catalyze the transfer of the amino group from L-ornithine to an α-ketoglutarate. | + | The function of hOAT is to catalyze the transfer of the amino group from L-ornithine to an α-ketoglutarate. |
== Biological relevance and broader implications == | == Biological relevance and broader implications == | ||
hOAT is found in most tissues in the body but predominates in the liver and kidney. There is a need to study the enzyme hOAT because the overexpression of this protein aids the proliferation of cancer cells, specifically Hepatocellular carcinoma (HCC), a common form of liver cancer. hOAT has been a target for mechanism-based inactivators (MBIs) in ongoing drug design efforts. HCC is normally diagnosed at advanced stages where the tumors tend to be resistant to radiotherapy and chemotherapy, making this type of cancer difficult to treat. | hOAT is found in most tissues in the body but predominates in the liver and kidney. There is a need to study the enzyme hOAT because the overexpression of this protein aids the proliferation of cancer cells, specifically Hepatocellular carcinoma (HCC), a common form of liver cancer. hOAT has been a target for mechanism-based inactivators (MBIs) in ongoing drug design efforts. HCC is normally diagnosed at advanced stages where the tumors tend to be resistant to radiotherapy and chemotherapy, making this type of cancer difficult to treat. |
Revision as of 18:26, 12 December 2022
This Sandbox is Reserved from November 4, 2022 through January 1, 2023 for use in the course CHEM 351 Biochemistry taught by Bonnie Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1755 through Sandbox Reserved 1764. |
To get started:
More help: Help:Editing |
Human Ornithine Aminotransferase
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644