Sandbox Reserved 1761

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the < and > signs.
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the < and > signs.
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
-
 
+
[[Image:Gaba.jpg|200 px|thumb|left|GABA]]
== Function of your protein ==
== Function of your protein ==
The specific function of <scene name='93/934005/Spin/2'>Human ornithine aminotransferase</scene> (''h''OAT) is that of an enzyme. It can be found in humans, as well as mice and pigs. It helps transfer L-ornithine’s δ-amino group to α-ketoglutarate (α-KG). <ref>https://doi.org/10.1016/j.jbc.2022.101969</ref> There is a lack of understanding in regards to ''h''OAT's catalytic mechanism, even though it is a key component of human metabolism. As noted in the article, ''h''OAT operates on a "Bi-Bi, Ping-Pong" kinetic mechanism resulting in the first part of the reaction undergoing a conversion of PLP -> PMP and L-Orn -> L-GSA. Then PMP's amino group is catalyzed by ''h''OAT creating an α-KG.
The specific function of <scene name='93/934005/Spin/2'>Human ornithine aminotransferase</scene> (''h''OAT) is that of an enzyme. It can be found in humans, as well as mice and pigs. It helps transfer L-ornithine’s δ-amino group to α-ketoglutarate (α-KG). <ref>https://doi.org/10.1016/j.jbc.2022.101969</ref> There is a lack of understanding in regards to ''h''OAT's catalytic mechanism, even though it is a key component of human metabolism. As noted in the article, ''h''OAT operates on a "Bi-Bi, Ping-Pong" kinetic mechanism resulting in the first part of the reaction undergoing a conversion of PLP -> PMP and L-Orn -> L-GSA. Then PMP's amino group is catalyzed by ''h''OAT creating an α-KG.

Revision as of 16:53, 13 December 2022

This Sandbox is Reserved from November 4, 2022 through January 1, 2023 for use in the course CHEM 351 Biochemistry taught by Bonnie Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1755 through Sandbox Reserved 1764.
To get started:
  • Click the edit this page tab at the top. Click on Show preview and then Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Human ornithine aminotransferase (hOAT)

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. https://doi.org/10.1016/j.jbc.2022.101969

Butrin, A., Butrin, A., Wawrzak, Z., Moran, G. R., & Liu, D. (2022). Determination of the ph dependence, substrate specificity, and turnovers of alternative substrates for human ornithine aminotransferase. Journal of Biological Chemistry, 298(6), 101969. https://doi.org/10.1016/j.jbc.2022.101969

Personal tools