|
|
| Line 3: |
Line 3: |
| | <StructureSection load='3cvf' size='340' side='right'caption='[[3cvf]], [[Resolution|resolution]] 2.90Å' scene=''> | | <StructureSection load='3cvf' size='340' side='right'caption='[[3cvf]], [[Resolution|resolution]] 2.90Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[3cvf]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CVF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CVF FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3cvf]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CVF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CVF FirstGlance]. <br> |
| - | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3cve|3cve]]</div></td></tr>
| + | |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HOMER3 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cvf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cvf OCA], [https://pdbe.org/3cvf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cvf RCSB], [https://www.ebi.ac.uk/pdbsum/3cvf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cvf ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cvf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cvf OCA], [https://pdbe.org/3cvf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cvf RCSB], [https://www.ebi.ac.uk/pdbsum/3cvf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cvf ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[https://www.uniprot.org/uniprot/HOME3_HUMAN HOME3_HUMAN]] Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses.
| + | [https://www.uniprot.org/uniprot/HOME3_HUMAN HOME3_HUMAN] Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses. |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 34: |
Line 32: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Giannini, V]] | + | [[Category: Giannini V]] |
| - | [[Category: Hayashi, M K]] | + | [[Category: Hayashi MK]] |
| - | [[Category: Hayashi, Y]] | + | [[Category: Hayashi Y]] |
| - | [[Category: Sala, C]] | + | [[Category: Sala C]] |
| - | [[Category: Stearns, M H]] | + | [[Category: Stearns MH]] |
| - | [[Category: Xu, R M]] | + | [[Category: Xu R-M]] |
| - | [[Category: Alternative splicing]]
| + | |
| - | [[Category: Cell junction]]
| + | |
| - | [[Category: Coiled coil]]
| + | |
| - | [[Category: Cytoplasm]]
| + | |
| - | [[Category: Membrane]]
| + | |
| - | [[Category: Phosphoprotein]]
| + | |
| - | [[Category: Polymorphism]]
| + | |
| - | [[Category: Postsynaptic cell membrane]]
| + | |
| - | [[Category: Signaling protein]]
| + | |
| - | [[Category: Synapse]]
| + | |
| Structural highlights
Function
HOME3_HUMAN Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The postsynaptic density (PSD) is crucial for synaptic functions, but the molecular architecture retaining its structure and components remains elusive. Homer and Shank are among the most abundant scaffolding proteins in the PSD, working synergistically for maturation of dendritic spines. Here, we demonstrate that Homer and Shank, together, form a mesh-like matrix structure. Crystallographic analysis of this region revealed a pair of parallel dimeric coiled coils intercalated in a tail-to-tail fashion to form a tetramer, giving rise to the unique configuration of a pair of N-terminal EVH1 domains at each end of the coiled coil. In neurons, the tetramerization is required for structural integrity of the dendritic spines and recruitment of proteins to synapses. We propose that the Homer-Shank complex serves as a structural framework and as an assembly platform for other PSD proteins.
The postsynaptic density proteins Homer and Shank form a polymeric network structure.,Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu RM, Li H, Sala C, Hayashi Y Cell. 2009 Apr 3;137(1):159-71. PMID:19345194[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu RM, Li H, Sala C, Hayashi Y. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell. 2009 Apr 3;137(1):159-71. PMID:19345194 doi:10.1016/j.cell.2009.01.050
|