|
|
Line 3: |
Line 3: |
| <StructureSection load='1ea4' size='340' side='right'caption='[[1ea4]], [[Resolution|resolution]] 2.95Å' scene=''> | | <StructureSection load='1ea4' size='340' side='right'caption='[[1ea4]], [[Resolution|resolution]] 2.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1ea4]] is a 16 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EA4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1EA4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1ea4]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptococcus_agalactiae Streptococcus agalactiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EA4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1EA4 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1b01|1b01]], [[2cpg|2cpg]]</div></td></tr> | + | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ea4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ea4 OCA], [https://pdbe.org/1ea4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ea4 RCSB], [https://www.ebi.ac.uk/pdbsum/1ea4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ea4 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ea4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ea4 OCA], [https://pdbe.org/1ea4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ea4 RCSB], [https://www.ebi.ac.uk/pdbsum/1ea4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ea4 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/COPG_STRAG COPG_STRAG]] Regulates the plasmid copy number. Binds to the RepAB promoter thus controlling the synthesis of the plasmid replication initiator protein RepB.<ref>PMID:2497439</ref> <ref>PMID:2373704</ref>
| + | [https://www.uniprot.org/uniprot/COPG_STRAG COPG_STRAG] Regulates the plasmid copy number. Binds to the RepAB promoter thus controlling the synthesis of the plasmid replication initiator protein RepB.<ref>PMID:2497439</ref> <ref>PMID:2373704</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 22: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Acebo, P]] | + | [[Category: Streptococcus agalactiae]] |
- | [[Category: Coll, M]] | + | [[Category: Acebo P]] |
- | [[Category: Costa, M]] | + | [[Category: Coll M]] |
- | [[Category: Eritja, R]] | + | [[Category: Costa M]] |
- | [[Category: Espinosa, M]] | + | [[Category: Eritja R]] |
- | [[Category: Gomis-Rueth, F X]] | + | [[Category: Espinosa M]] |
- | [[Category: Sola, M]] | + | [[Category: Gomis-Rueth FX]] |
- | [[Category: Solar, G D]] | + | [[Category: Sola M]] |
- | [[Category: Dna-binding protein]]
| + | [[Category: Solar GD]] |
- | [[Category: Gene regulation-dna complex]]
| + | |
- | [[Category: Gene regulation/dna]]
| + | |
- | [[Category: Plasmid]]
| + | |
- | [[Category: Protein-dna complex]]
| + | |
- | [[Category: Transcriptional repressor]]
| + | |
| Structural highlights
Function
COPG_STRAG Regulates the plasmid copy number. Binds to the RepAB promoter thus controlling the synthesis of the plasmid replication initiator protein RepB.[1] [2]
Publication Abstract from PubMed
CopG is a 45 amino acid residue transcriptional repressor involved in the copy number control of the streptococcal plasmid pMV158. To do so, it binds to a DNA operator that contains a 13 bp pseudosymmetric DNA element. Binding of CopG to its operator results in repression, at the transcriptional level, of its own synthesis and that of the initiator of replication protein, RepB. Biochemical experiments have shown that CopG co-operatively associates to its target DNA at low protein:DNA ratios, completely protecting four helical turns on the same face of the double helix in both directions from the inverted repeat that constitutes the CopG primary target. This has been correlated with a CopG-mediated DNA bend of about 100 degrees. Here, we show that binding of CopG to DNA fragments containing the inverted repeat just at one end led to nucleation of the protein initiating from the inverted repeat. Nucleation extended to the entire fragment, with CopG-DNA contacts occurring on the same face of the DNA helix. The protein, the prototype for a family of homologous plasmid repressors, displays a homodimeric ribbon-helix-helix arrangement. It polymerises within the unbound crystal to render a continuous right-handed protein superhelix of homodimers, around which a bound double-stranded (ds) DNA could wrap. We have solved the crystal structure of CopG in complex with a 22 bp dsDNA oligonucleotide encompassing the cognate pseudosymmetric element. In the crystal, one protein tetramer binds at one face of the DNA with two parallel beta-ribbons inserted into the major groove. The DNA is bent about 50 degrees under compression of both major and minor grooves. A continuous right-handed complex helix made up mainly by protein-protein and some protein-DNA interactions is observed. The protein-protein interactions involve regions similar to those observed in the oligomerisation of the native crystals and those employed to set up the functional tetramer. A previously solved complex structure of the protein with a 19 bp dsDNA had unveiled a left-handed helical superstructure just made up by DNA interactions.
Plasmid transcriptional repressor CopG oligomerises to render helical superstructures unbound and in complexes with oligonucleotides.,Costa M, Sola M, del Solar G, Eritja R, Hernandez-Arriaga AM, Espinosa M, Gomis-Ruth FX, Coll M J Mol Biol. 2001 Jul 6;310(2):403-17. PMID:11428897[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ del Solar GH, de al Campa AG, Perez-Martin J, Choli T, Espinosa M. Purification and characterization of RepA, a protein involved in the copy number control of plasmid pLS1. Nucleic Acids Res. 1989 Apr 11;17(7):2405-20. PMID:2497439
- ↑ del Solar GH, Perez-Martin J, Espinosa M. Plasmid pLS1-encoded RepA protein regulates transcription from repAB promoter by binding to a DNA sequence containing a 13-base pair symmetric element. J Biol Chem. 1990 Jul 25;265(21):12569-75. PMID:2373704
- ↑ Costa M, Sola M, del Solar G, Eritja R, Hernandez-Arriaga AM, Espinosa M, Gomis-Ruth FX, Coll M. Plasmid transcriptional repressor CopG oligomerises to render helical superstructures unbound and in complexes with oligonucleotides. J Mol Biol. 2001 Jul 6;310(2):403-17. PMID:11428897 doi:10.1006/jmbi.2001.4760
|