|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of eukaryotic translation initiation factor eIF5B (517-970) from Chaetomium thermophilum in complex with GDP== | | ==Crystal structure of eukaryotic translation initiation factor eIF5B (517-970) from Chaetomium thermophilum in complex with GDP== |
- | <StructureSection load='4ncl' size='340' side='right' caption='[[4ncl]], [[Resolution|resolution]] 2.12Å' scene=''> | + | <StructureSection load='4ncl' size='340' side='right'caption='[[4ncl]], [[Resolution|resolution]] 2.12Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4ncl]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Chatd Chatd]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NCL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4NCL FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4ncl]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Chaetomium_thermophilum_var._thermophilum_DSM_1495 Chaetomium thermophilum var. thermophilum DSM 1495]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NCL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4NCL FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4ncf|4ncf]], [[4ncn|4ncn]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ncl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ncl OCA], [https://pdbe.org/4ncl PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ncl RCSB], [https://www.ebi.ac.uk/pdbsum/4ncl PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ncl ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CTHT_0029840 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=759272 CHATD])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ncl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ncl OCA], [http://pdbe.org/4ncl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ncl RCSB], [http://www.ebi.ac.uk/pdbsum/4ncl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ncl ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/IF2P_CHATD IF2P_CHATD] Plays a role in translation initiation. Translational GTPase that catalyzes the joining of the 40S and 60S subunits to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon. GTP binding and hydrolysis induces conformational changes in the enzyme that renders it active for productive interactions with the ribosome. The release of the enzyme after formation of the initiation complex is a prerequisite to form elongation-competent ribosomes.<ref>PMID:24686316</ref> <ref>PMID:25225612</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Chatd]] | + | [[Category: Chaetomium thermophilum var. thermophilum DSM 1495]] |
- | [[Category: Ficner, R]] | + | [[Category: Large Structures]] |
- | [[Category: Kuhle, B]] | + | [[Category: Ficner R]] |
- | [[Category: Eif5b/if2]] | + | [[Category: Kuhle B]] |
- | [[Category: Gtpase]]
| + | |
- | [[Category: Ribosome]]
| + | |
- | [[Category: Subunit joining]]
| + | |
- | [[Category: Translation]]
| + | |
- | [[Category: Translation initiation]]
| + | |
| Structural highlights
Function
IF2P_CHATD Plays a role in translation initiation. Translational GTPase that catalyzes the joining of the 40S and 60S subunits to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon. GTP binding and hydrolysis induces conformational changes in the enzyme that renders it active for productive interactions with the ribosome. The release of the enzyme after formation of the initiation complex is a prerequisite to form elongation-competent ribosomes.[1] [2]
Publication Abstract from PubMed
eIF5B is a eukaryal translational GTPase that catalyzes ribosomal subunit joining to form elongation-competent ribosomes. Despite its central role in protein synthesis, the mechanistic details that govern the function of eIF5B or its archaeal and bacterial (IF2) orthologs remained unclear. Here, we present six high-resolution crystal structures of eIF5B in its apo, GDP- and GTP-bound form that, together with an analysis of the thermodynamics of nucleotide binding, provide a detailed picture of the entire nucleotide cycle performed by eIF5B. Our data show that GTP binding induces significant conformational changes in the two conserved switch regions of the G domain, resulting in the reorganization of the GTPase center. These rearrangements are accompanied by the rotation of domain II relative to the G domain and release of domain III from its stable contacts with switch 2, causing an increased intrinsic flexibility in the free GTP-bound eIF5B. Based on these data, we propose a novel domain release mechanism for eIF5B/IF2 activation that explains how eIF5B and IF2 fulfill their catalytic role during ribosomal subunit joining.
eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining.,Kuhle B, Ficner R EMBO J. 2014 May 16;33(10):1177-91. doi: 10.1002/embj.201387344. Epub 2014 Mar, 31. PMID:24686316[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kuhle B, Ficner R. eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J. 2014 May 16;33(10):1177-91. doi: 10.1002/embj.201387344. Epub 2014 Mar, 31. PMID:24686316 doi:http://dx.doi.org/10.1002/embj.201387344
- ↑ Kuhle B, Ficner R. A monovalent cation acts as structural and catalytic cofactor in translational GTPases. EMBO J. 2014 Sep 15. pii: e201488517. PMID:25225612 doi:http://dx.doi.org/10.15252/embj.201488517
- ↑ Kuhle B, Ficner R. eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J. 2014 May 16;33(10):1177-91. doi: 10.1002/embj.201387344. Epub 2014 Mar, 31. PMID:24686316 doi:http://dx.doi.org/10.1002/embj.201387344
|