8b9z
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==Drosophila melanogaster complex I in the Active state (Dm1)== | |
| + | <StructureSection load='8b9z' size='340' side='right'caption='[[8b9z]], [[Resolution|resolution]] 3.28Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[8b9z]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8B9Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8B9Z FirstGlance]. <br> | ||
| + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2MR:N3,+N4-DIMETHYLARGININE'>2MR</scene>, <scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=DGT:2-DEOXYGUANOSINE-5-TRIPHOSPHATE'>DGT</scene>, <scene name='pdbligand=EHZ:~{S}-[2-[3-[[(2~{R})-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]amino]propanoylamino]ethyl]+(3~{S})-3-oxidanyltetradecanethioate'>EHZ</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=PC1:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PC1</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=UQ9:UBIQUINONE-9'>UQ9</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8b9z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8b9z OCA], [https://pdbe.org/8b9z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8b9z RCSB], [https://www.ebi.ac.uk/pdbsum/8b9z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8b9z ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/NU3M_DROME NU3M_DROME] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states the ubiquinone-binding site is unchanged, but a deactive-type p-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology. | ||
| - | + | Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster.,Agip AA, Chung I, Sanchez-Martinez A, Whitworth AJ, Hirst J Elife. 2023 Jan 9;12:e84424. doi: 10.7554/eLife.84424. PMID:36622099<ref>PMID:36622099</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | [[Category: | + | </div> |
| + | <div class="pdbe-citations 8b9z" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Drosophila melanogaster]] | ||
| + | [[Category: Large Structures]] | ||
| + | [[Category: Agip AA]] | ||
| + | [[Category: Chung I]] | ||
| + | [[Category: Hirst J]] | ||
| + | [[Category: Sanchez-Martinez A]] | ||
| + | [[Category: Whitworth AJ]] | ||
Revision as of 07:27, 18 January 2023
Drosophila melanogaster complex I in the Active state (Dm1)
| |||||||||||
