|
|
| Line 1: |
Line 1: |
| | | | |
| | ==single cryogenic temperature model of DHFR== | | ==single cryogenic temperature model of DHFR== |
| - | <StructureSection load='4nx7' size='340' side='right' caption='[[4nx7]], [[Resolution|resolution]] 1.15Å' scene=''> | + | <StructureSection load='4nx7' size='340' side='right'caption='[[4nx7]], [[Resolution|resolution]] 1.15Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4nx7]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NX7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4NX7 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4nx7]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NX7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4NX7 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=FOL:FOLIC+ACID'>FOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=FOL:FOLIC+ACID'>FOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4kjj|4kjj]], [[4nx6|4nx6]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4nx7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nx7 OCA], [https://pdbe.org/4nx7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4nx7 RCSB], [https://www.ebi.ac.uk/pdbsum/4nx7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4nx7 ProSAT]</span></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">folA, tmrA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr>
| + | |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dihydrofolate_reductase Dihydrofolate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.5.1.3 1.5.1.3] </span></td></tr>
| + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4nx7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nx7 OCA], [http://pdbe.org/4nx7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4nx7 RCSB], [http://www.ebi.ac.uk/pdbsum/4nx7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4nx7 ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/DYR_ECOLI DYR_ECOLI]] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | + | [https://www.uniprot.org/uniprot/DYR_ECOLI DYR_ECOLI] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 23: |
Line 20: |
| | | | |
| | ==See Also== | | ==See Also== |
| - | *[[Dihydrofolate reductase|Dihydrofolate reductase]] | + | *[[Dihydrofolate reductase 3D structures|Dihydrofolate reductase 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Dihydrofolate reductase]] | + | [[Category: Escherichia coli K-12]] |
| - | [[Category: Ecoli]] | + | [[Category: Large Structures]] |
| - | [[Category: Bedem, H van den]]
| + | [[Category: Fenwick RB]] |
| - | [[Category: Fenwick, R B]] | + | [[Category: Fraser JS]] |
| - | [[Category: Fraser, J S]] | + | [[Category: Wright PE]] |
| - | [[Category: Wright, P E]] | + | [[Category: Van den Bedem H]] |
| - | [[Category: Folate metabolism]] | + | |
| - | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
Function
DYR_ECOLI Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
Publication Abstract from PubMed
Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond-nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S(2)) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements.
Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR.,Fenwick RB, van den Bedem H, Fraser JS, Wright PE Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E445-54. doi:, 10.1073/pnas.1323440111. Epub 2014 Jan 13. PMID:24474795[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fenwick RB, van den Bedem H, Fraser JS, Wright PE. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E445-54. doi:, 10.1073/pnas.1323440111. Epub 2014 Jan 13. PMID:24474795 doi:http://dx.doi.org/10.1073/pnas.1323440111
|