|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of the C-terminal regulatory domain of murine GCN2== | | ==Crystal structure of the C-terminal regulatory domain of murine GCN2== |
- | <StructureSection load='4otn' size='340' side='right' caption='[[4otn]], [[Resolution|resolution]] 1.90Å' scene=''> | + | <StructureSection load='4otn' size='340' side='right'caption='[[4otn]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4otn]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4OTN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4OTN FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4otn]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4OTN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4OTN FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4otm|4otm]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4otn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4otn OCA], [https://pdbe.org/4otn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4otn RCSB], [https://www.ebi.ac.uk/pdbsum/4otn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4otn ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Eif2ak4, Gcn2, Kiaa1338 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4otn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4otn OCA], [http://pdbe.org/4otn PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4otn RCSB], [http://www.ebi.ac.uk/pdbsum/4otn PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4otn ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/E2AK4_MOUSE E2AK4_MOUSE]] Can phosphorylate the alpha subunit of EIF2 and may mediate translational control. | + | [https://www.uniprot.org/uniprot/E2AK4_MOUSE E2AK4_MOUSE] Can phosphorylate the alpha subunit of EIF2 and may mediate translational control. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 4otn" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4otn" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Large Structures]] |
- | [[Category: Non-specific serine/threonine protein kinase]] | + | [[Category: Mus musculus]] |
- | [[Category: Georgiadis, M M]] | + | [[Category: Georgiadis MM]] |
- | [[Category: He, H]] | + | [[Category: He H]] |
- | [[Category: 4-stranded beta sheet 3 helix bundle]]
| + | |
- | [[Category: C-terminal regulatory domain]]
| + | |
- | [[Category: Gcn2]]
| + | |
- | [[Category: Regulatory domain of eif2 stress kinase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
E2AK4_MOUSE Can phosphorylate the alpha subunit of EIF2 and may mediate translational control.
Publication Abstract from PubMed
In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs that accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences.
Crystal structures of GCN2 C-terminal domains suggest regulatory differences in yeast and mammals.,He H, Singh I, Wek SA, Dey S, Baird TD, Wek RC, Georgiadis MM J Biol Chem. 2014 Apr 9. PMID:24719324[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ He H, Singh I, Wek SA, Dey S, Baird TD, Wek RC, Georgiadis MM. Crystal structures of GCN2 C-terminal domains suggest regulatory differences in yeast and mammals. J Biol Chem. 2014 Apr 9. PMID:24719324 doi:http://dx.doi.org/10.1074/jbc.M114.560789
|