|
|
Line 1: |
Line 1: |
| | | |
| ==14.C6 TCR complexed with MHC class II I-Ab/3K peptide== | | ==14.C6 TCR complexed with MHC class II I-Ab/3K peptide== |
- | <StructureSection load='4p5t' size='340' side='right' caption='[[4p5t]], [[Resolution|resolution]] 3.26Å' scene=''> | + | <StructureSection load='4p5t' size='340' side='right'caption='[[4p5t]], [[Resolution|resolution]] 3.26Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4p5t]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P5T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4P5T FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4p5t]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P5T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4P5T FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3rdt|3rdt]]</td></tr> | + | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4p5t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p5t OCA], [https://pdbe.org/4p5t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4p5t RCSB], [https://www.ebi.ac.uk/pdbsum/4p5t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4p5t ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TRA@ ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), B2M, HDCMA22P ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), H2-Aa ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice]), H2-Ab1, H2-iabeta ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4p5t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p5t OCA], [http://pdbe.org/4p5t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4p5t RCSB], [http://www.ebi.ac.uk/pdbsum/4p5t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4p5t ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/HA2B_MOUSE HA2B_MOUSE] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Large Structures]] |
- | [[Category: Huseby, E S]] | + | [[Category: Mus musculus]] |
- | [[Category: Stadinski, B]] | + | [[Category: Huseby ES]] |
- | [[Category: Stern, L J]] | + | [[Category: Stadinski B]] |
- | [[Category: Trenh, P]] | + | [[Category: Stern LJ]] |
- | [[Category: Ig-like domain]] | + | [[Category: Trenh P]] |
- | [[Category: Immune receptor]]
| + | |
- | [[Category: Immune system]]
| + | |
- | [[Category: Mhc]]
| + | |
- | [[Category: Tcr]]
| + | |
| Structural highlights
Function
HA2B_MOUSE
Publication Abstract from PubMed
The mature T cell repertoire has the ability to orchestrate immunity to a wide range of potential pathogen challenges. This ability stems from thymic development producing individual T cell clonotypes that express TCRs with unique patterns of Ag reactivity. The Ag specificity of TCRs is created from the combinatorial pairing of one of a set of germline encoded TCR Valpha and Vbeta gene segments with randomly created CDR3 sequences. How the amalgamation of germline encoded and randomly created TCR sequences results in Ag receptors with unique patterns of ligand specificity is not fully understood. Using cellular, biophysical, and structural analyses, we show that CDR3alpha residues can modulate the geometry in which TCRs bind peptide-MHC (pMHC), governing whether and how germline encoded TCR Valpha and Vbeta residues interact with MHC. In addition, a CDR1alpha residue that is positioned distal to the TCR-pMHC binding interface is shown to contribute to the peptide specificity of T cells. These findings demonstrate that the specificity of individual T cell clonotypes arises not only from TCR residues that create direct contacts with the pMHC, but also from a collection of indirect effects that modulate how TCR residues are used to bind pMHC.
Effect of CDR3 Sequences and Distal V Gene Residues in Regulating TCR-MHC Contacts and Ligand Specificity.,Stadinski BD, Trenh P, Duke B, Huseby PG, Li G, Stern LJ, Huseby ES J Immunol. 2014 May 9. PMID:24813203[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Stadinski BD, Trenh P, Duke B, Huseby PG, Li G, Stern LJ, Huseby ES. Effect of CDR3 Sequences and Distal V Gene Residues in Regulating TCR-MHC Contacts and Ligand Specificity. J Immunol. 2014 May 9. PMID:24813203 doi:http://dx.doi.org/10.4049/jimmunol.1303209
|