|
|
Line 1: |
Line 1: |
| | | |
| ==Structure of the free form of the N-terminal VH1 domain of monomeric alpha-catenin== | | ==Structure of the free form of the N-terminal VH1 domain of monomeric alpha-catenin== |
- | <StructureSection load='4p9t' size='340' side='right' caption='[[4p9t]], [[Resolution|resolution]] 2.50Å' scene=''> | + | <StructureSection load='4p9t' size='340' side='right'caption='[[4p9t]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4p9t]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P9T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4P9T FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4p9t]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P9T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4P9T FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Ctnna2, Catna2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4p9t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p9t OCA], [https://pdbe.org/4p9t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4p9t RCSB], [https://www.ebi.ac.uk/pdbsum/4p9t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4p9t ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4p9t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p9t OCA], [http://pdbe.org/4p9t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4p9t RCSB], [http://www.ebi.ac.uk/pdbsum/4p9t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4p9t ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CTNA2_MOUSE CTNA2_MOUSE]] May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system. Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation.<ref>PMID:12089526</ref> <ref>PMID:12123610</ref> <ref>PMID:15034585</ref> | + | [https://www.uniprot.org/uniprot/CTNA2_MOUSE CTNA2_MOUSE] May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system. Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation.<ref>PMID:12089526</ref> <ref>PMID:12123610</ref> <ref>PMID:15034585</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 4p9t" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4p9t" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Catenin 3D structures|Catenin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Large Structures]] |
- | [[Category: Hakoshima, T]] | + | [[Category: Mus musculus]] |
- | [[Category: Hirano, Y]] | + | [[Category: Hakoshima T]] |
- | [[Category: Shibahara, T]]
| + | [[Category: Hirano Y]] |
- | [[Category: Adherens junction]] | + | [[Category: Shibahara T]] |
- | [[Category: Cell adhesion]] | + | |
- | [[Category: Cytoskeletal protein]]
| + | |
- | [[Category: Helix bundle]]
| + | |
| Structural highlights
Function
CTNA2_MOUSE May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system. Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation.[1] [2] [3]
Publication Abstract from PubMed
The N-terminal vinculin-homology 1 (VH1) domain of alpha-catenin facilitates two exclusive forms, a monomeric form directly bound to beta-catenin for linking E-cadherin to F-actin or a homodimer for the inhibition of beta-catenin binding. Competition of these two forms is affected by approximately 80 N-terminal residues, whose structure is poorly understood. We have determined the structure of the monomeric free form of the alphaN-catenin VH1 domain and revealed that the N-terminal residues form alpha1 and alpha2 helices to complete formation of the N-terminal four-helix bundle. Dynamic conformational changes of these two helices control formation of the beta-catenin-bound monomer or unbound homodimer.
Structure of the free form of the N-terminal VH1 domain of monomeric alpha-catenin.,Shibahara T, Hirano Y, Hakoshima T FEBS Lett. 2015 Jul 8;589(15):1754-60. doi: 10.1016/j.febslet.2015.05.053. Epub, 2015 Jun 9. PMID:26071377[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Park C, Falls W, Finger JH, Longo-Guess CM, Ackerman SL. Deletion in Catna2, encoding alpha N-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nat Genet. 2002 Jul;31(3):279-84. Epub 2002 Jun 24. PMID:12089526 doi:10.1038/ng908
- ↑ Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M. Cadherin regulates dendritic spine morphogenesis. Neuron. 2002 Jul 3;35(1):77-89. PMID:12123610
- ↑ Abe K, Chisaka O, Van Roy F, Takeichi M. Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat Neurosci. 2004 Apr;7(4):357-63. Epub 2004 Mar 21. PMID:15034585 doi:10.1038/nn1212
- ↑ Shibahara T, Hirano Y, Hakoshima T. Structure of the free form of the N-terminal VH1 domain of monomeric alpha-catenin. FEBS Lett. 2015 Jul 8;589(15):1754-60. doi: 10.1016/j.febslet.2015.05.053. Epub, 2015 Jun 9. PMID:26071377 doi:http://dx.doi.org/10.1016/j.febslet.2015.05.053
|