|
|
Line 3: |
Line 3: |
| <StructureSection load='4qal' size='340' side='right'caption='[[4qal]], [[Resolution|resolution]] 1.50Å' scene=''> | | <StructureSection load='4qal' size='340' side='right'caption='[[4qal]], [[Resolution|resolution]] 1.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4qal]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QAL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4QAL FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4qal]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QAL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QAL FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2afg|2afg]], [[1jqz|1jqz]], [[1rg8|1rg8]], [[4q91|4q91]], [[4q9g|4q9g]], [[4q9p|4q9p]], [[1jy0|1jy0]], [[3fjh|3fjh]], [[3fjf|3fjf]], [[3fje|3fje]], [[3fjk|3fjk]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qal FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qal OCA], [https://pdbe.org/4qal PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qal RCSB], [https://www.ebi.ac.uk/pdbsum/4qal PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qal ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FGF1, FGFA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4qal FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qal OCA], [http://pdbe.org/4qal PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4qal RCSB], [http://www.ebi.ac.uk/pdbsum/4qal PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4qal ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/FGF1_HUMAN FGF1_HUMAN]] Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.<ref>PMID:8663044</ref> <ref>PMID:16597617</ref> <ref>PMID:20145243</ref> | + | [https://www.uniprot.org/uniprot/FGF1_HUMAN FGF1_HUMAN] Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.<ref>PMID:8663044</ref> <ref>PMID:16597617</ref> <ref>PMID:20145243</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 20: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Fibroblast growth factor|Fibroblast growth factor]] | + | *[[Fibroblast growth factor 3D structures|Fibroblast growth factor 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Blaber, M]] | + | [[Category: Blaber M]] |
- | [[Category: Xia, X]] | + | [[Category: Xia X]] |
- | [[Category: Beta-trefoil]]
| + | |
- | [[Category: Extracellular matrix]]
| + | |
- | [[Category: Fgfr binding]]
| + | |
- | [[Category: Growth factor]]
| + | |
- | [[Category: Heparin binding]]
| + | |
- | [[Category: Protein binding]]
| + | |
| Structural highlights
Function
FGF1_HUMAN Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.[1] [2] [3]
Publication Abstract from PubMed
Buried free-cysteine (Cys) residues can contribute to an irreversible unfolding pathway that promotes protein aggregation, increases immunogenic potential, and significantly reduces protein functional half-life. Consequently, mutation of buried free-Cys residues can result in significant improvement in the storage, reconstitution, and pharmacokinetic properties of protein-based therapeutics. Mutational design to eliminate buried free-Cys residues typically follows one of two common heuristics: either substitution by Ser (polar and isosteric), or substitution by Ala or Val (hydrophobic); however, a detailed structural and thermodynamic understanding of Cys mutations is lacking. We report a comprehensive structure and stability study of Ala, Ser, Thr, and Val mutations at each of the three buried free-Cys positions (Cys16, Cys83, and Cys117) in fibroblast growth factor-1. Mutation was almost universally destabilizing, indicating a general optimization for the wild-type Cys, including van der Waals and H-bond interactions. Structural response to Cys mutation characteristically involved changes to maintain, or effectively substitute, local H-bond interactions-by either structural collapse to accommodate the smaller oxygen radius of Ser/Thr, or conversely, expansion to enable inclusion of novel H-bonding solvent. Despite the diverse structural effects, the least destabilizing average substitution at each position was Ala, and not isosteric Ser. (c) 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:566-576, 2015.
Mutation choice to eliminate buried free cysteines in protein therapeutics.,Xia X, Longo LM, Blaber M J Pharm Sci. 2015 Feb;104(2):566-76. doi: 10.1002/jps.24188. Epub 2014 Oct 13. PMID:25312595[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996 Jun 21;271(25):15292-7. PMID:8663044
- ↑ Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006 Jun 9;281(23):15694-700. Epub 2006 Apr 4. PMID:16597617 doi:10.1074/jbc.M601252200
- ↑ Fernandez IS, Cuevas P, Angulo J, Lopez-Navajas P, Canales-Mayordomo A, Gonzalez-Corrochano R, Lozano RM, Valverde S, Jimenez-Barbero J, Romero A, Gimenez-Gallego G. Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. J Biol Chem. 2010 Apr 9;285(15):11714-29. Epub 2010 Feb 9. PMID:20145243 doi:10.1074/jbc.M109.064618
- ↑ Xia X, Longo LM, Blaber M. Mutation choice to eliminate buried free cysteines in protein therapeutics. J Pharm Sci. 2015 Feb;104(2):566-76. doi: 10.1002/jps.24188. Epub 2014 Oct 13. PMID:25312595 doi:http://dx.doi.org/10.1002/jps.24188
|