|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of 3-ketosteroid-9-alpha-hydroxylase 5 (KshA5) from R. rhodochrous in complex with 1,4-30Q-CoA== | | ==Crystal structure of 3-ketosteroid-9-alpha-hydroxylase 5 (KshA5) from R. rhodochrous in complex with 1,4-30Q-CoA== |
- | <StructureSection load='4qdd' size='340' side='right' caption='[[4qdd]], [[Resolution|resolution]] 2.60Å' scene=''> | + | <StructureSection load='4qdd' size='340' side='right'caption='[[4qdd]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4qdd]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacterium_mycoides_roseum"_grotenfelt_1889 "bacterium mycoides roseum" grotenfelt 1889]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QDD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4QDD FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4qdd]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodococcus_rhodochrous Rhodococcus rhodochrous]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QDD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QDD FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=30Q:S-[2-(PROPANOYLAMINO)ETHYL]+(2S)-2-[(8S,9S,10R,13S,14S,17R)-10,13-DIMETHYL-3-OXO-6,7,8,9,10,11,12,13,14,15,16,17-DODECAHYDRO-3H-CYCLOPENTA[A]PHENANTHREN-17-YL]PROPANETHIOATE+(NON-PREFERRED+NAME)'>30Q</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=30Q:S-[2-(PROPANOYLAMINO)ETHYL]+(2S)-2-[(8S,9S,10R,13S,14S,17R)-10,13-DIMETHYL-3-OXO-6,7,8,9,10,11,12,13,14,15,16,17-DODECAHYDRO-3H-CYCLOPENTA[A]PHENANTHREN-17-YL]PROPANETHIOATE+(NON-PREFERRED+NAME)'>30Q</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4qdc|4qdc]], [[4qdf|4qdf]], [[4qck|4qck]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qdd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qdd OCA], [https://pdbe.org/4qdd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qdd RCSB], [https://www.ebi.ac.uk/pdbsum/4qdd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qdd ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">kshA5 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1829 "Bacterium mycoides roseum" Grotenfelt 1889])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4qdd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qdd OCA], [http://pdbe.org/4qdd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4qdd RCSB], [http://www.ebi.ac.uk/pdbsum/4qdd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4qdd ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/KSHA5_RHORH KSHA5_RHORH] Probably involved in the degradation of cholesterol (PubMed:21642460). In vitro, catalyzes the introduction of a 9alpha-hydroxyl moiety into the ring B of 3-ketosteroid substrates such as 1,4-androstadiene-3,17-dione (ADD), 4-androstene-3,17-dione (AD), 4-androstene-17beta-ol-3-one (testosterone), 4-pregnene-3,20-dione (progesterone), 19-nor-4-androstene-3,17-dione, 1-(5alpha)-androstene-3,17-dione, 5alpha-androstane-3,17-dione, 5beta-androstane-3,17-dione, 5alpha-androstane-17beta-ol-3-one (stanolon), 11beta-hydrocortisone, 3-oxo-23,24-bisnorcholesta-4-en-22-oate (4-BNC), 23,24-bisnorcholesta-4-ene-22-oate, 3-oxo-23,24-bisnorcholesta-1,4-dien-22-oate (1,4-BNC) and 3-oxo-23,24-bisnorcholesta-1,4-dien-22-oyl-coenzyme A thioester (1,4-BNC-CoA) (PubMed:21642460, PubMed:25049233). KshA5 has the broadest substrate range without a clear substrate preference and is active with Delta-4, Delta-1,4, 5alpha-H and 5beta-H steroids, as well as with steroids having bulky aliphatic side chains and an isopropionyl side chain at C17.<ref>PMID:21642460</ref> <ref>PMID:25049233</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacterium mycoides roseum grotenfelt 1889]] | + | [[Category: Large Structures]] |
- | [[Category: Eltis, L D]] | + | [[Category: Rhodococcus rhodochrous]] |
- | [[Category: Penfield, J]] | + | [[Category: Eltis LD]] |
- | [[Category: Strynadka, N C]] | + | [[Category: Penfield J]] |
- | [[Category: Worrall, L J]]
| + | [[Category: Strynadka NC]] |
- | [[Category: Mixed function oxygenase]] | + | [[Category: Worrall LJ]] |
- | [[Category: Oxidoreductase-oxidoreductase inhibitor complex]] | + | |
| Structural highlights
Function
KSHA5_RHORH Probably involved in the degradation of cholesterol (PubMed:21642460). In vitro, catalyzes the introduction of a 9alpha-hydroxyl moiety into the ring B of 3-ketosteroid substrates such as 1,4-androstadiene-3,17-dione (ADD), 4-androstene-3,17-dione (AD), 4-androstene-17beta-ol-3-one (testosterone), 4-pregnene-3,20-dione (progesterone), 19-nor-4-androstene-3,17-dione, 1-(5alpha)-androstene-3,17-dione, 5alpha-androstane-3,17-dione, 5beta-androstane-3,17-dione, 5alpha-androstane-17beta-ol-3-one (stanolon), 11beta-hydrocortisone, 3-oxo-23,24-bisnorcholesta-4-en-22-oate (4-BNC), 23,24-bisnorcholesta-4-ene-22-oate, 3-oxo-23,24-bisnorcholesta-1,4-dien-22-oate (1,4-BNC) and 3-oxo-23,24-bisnorcholesta-1,4-dien-22-oyl-coenzyme A thioester (1,4-BNC-CoA) (PubMed:21642460, PubMed:25049233). KshA5 has the broadest substrate range without a clear substrate preference and is active with Delta-4, Delta-1,4, 5alpha-H and 5beta-H steroids, as well as with steroids having bulky aliphatic side chains and an isopropionyl side chain at C17.[1] [2]
Publication Abstract from PubMed
KshA is the oxygenase component of 3-ketosteroid 9alpha-hydroxylase, a Rieske oxygenase involved in the bacterial degradation of steroids. Consistent with its role in bile acid catabolism, KshA1 from Rhodococcus rhodochrous DSM43269 had the highest apparent specificity (kcat/Km) for steroids with an isopropyl side chain at C17, such as 3-oxo-23,24-bisnorcholesta-1,4-diene-22-oate (1,4-BNC). By contrast, the KshA5 homolog had the highest apparent specificity for substrates with no C17 side chain (kcat/Km >10(5) s(-1) m(-1) for 4-estrendione, 5alpha-androstandione, and testosterone). Unexpectedly, substrates such as 4-androstene-3,17-dione (ADD) and 4-BNC displayed strong substrate inhibition (Ki S approximately 100 mum). By comparison, the cholesterol-degrading KshAMtb from Mycobacterium tuberculosis had the highest specificity for CoA-thioesterified substrates. These specificities are consistent with differences in the catabolism of cholesterol and bile acids, respectively, in actinobacteria. X-ray crystallographic structures of the KshAMtb.ADD, KshA1.1,4-BNC-CoA, KshA5.ADD, and KshA5.1,4-BNC-CoA complexes revealed that the enzymes have very similar steroid-binding pockets with the substrate's C17 oriented toward the active site opening. Comparisons suggest Tyr-245 and Phe-297 are determinants of KshA1 specificity. All enzymes have a flexible 16-residue "mouth loop," which in some structures completely occluded the substrate-binding pocket from the bulk solvent. Remarkably, the catalytic iron and alpha-helices harboring its ligands were displaced up to 4.4 A in the KshA5.substrate complexes as compared with substrate-free KshA, suggesting that Rieske oxygenases may have a dynamic nature similar to cytochrome P450.
Substrate specificities and conformational flexibility of 3-ketosteroid 9alpha-hydroxylases.,Penfield JS, Worrall LJ, Strynadka NC, Eltis LD J Biol Chem. 2014 Sep 12;289(37):25523-36. doi: 10.1074/jbc.M114.575886. Epub, 2014 Jul 21. PMID:25049233[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Petrusma M, Hessels G, Dijkhuizen L, van der Geize R. Multiplicity of 3-Ketosteroid-9α-Hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J Bacteriol. 2011 Aug;193(15):3931-40. PMID:21642460 doi:10.1128/JB.00274-11
- ↑ Penfield JS, Worrall LJ, Strynadka NC, Eltis LD. Substrate specificities and conformational flexibility of 3-ketosteroid 9alpha-hydroxylases. J Biol Chem. 2014 Sep 12;289(37):25523-36. doi: 10.1074/jbc.M114.575886. Epub, 2014 Jul 21. PMID:25049233 doi:http://dx.doi.org/10.1074/jbc.M114.575886
- ↑ Penfield JS, Worrall LJ, Strynadka NC, Eltis LD. Substrate specificities and conformational flexibility of 3-ketosteroid 9alpha-hydroxylases. J Biol Chem. 2014 Sep 12;289(37):25523-36. doi: 10.1074/jbc.M114.575886. Epub, 2014 Jul 21. PMID:25049233 doi:http://dx.doi.org/10.1074/jbc.M114.575886
|