|
|
Line 3: |
Line 3: |
| <StructureSection load='1zvv' size='340' side='right'caption='[[1zvv]], [[Resolution|resolution]] 2.98Å' scene=''> | | <StructureSection load='1zvv' size='340' side='right'caption='[[1zvv]], [[Resolution|resolution]] 2.98Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1zvv]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZVV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZVV FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1zvv]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZVV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZVV FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr>
| + | |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1rzr|1rzr]], [[1sxg|1sxg]], [[1sxh|1sxh]], [[1sxi|1sxi]]</div></td></tr>
| + | |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ccpA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835]), crh ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zvv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zvv OCA], [https://pdbe.org/1zvv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zvv RCSB], [https://www.ebi.ac.uk/pdbsum/1zvv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zvv ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zvv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zvv OCA], [https://pdbe.org/1zvv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zvv RCSB], [https://www.ebi.ac.uk/pdbsum/1zvv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zvv ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CRH_BACSU CRH_BACSU]] Along with seryl-phosphorylated HPr, phosphorylated Crh is implicated in carbon catabolite repression (CCR) of levanase, inositol dehydrogenase, and beta-xylosidase. Exerts its effect on CCR by interacting with CcpA.<ref>PMID:9237995</ref> <ref>PMID:16316990</ref> [[https://www.uniprot.org/uniprot/CCPA_BACME CCPA_BACME]] Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions (By similarity).
| + | [https://www.uniprot.org/uniprot/CCPA_BACSU CCPA_BACSU] Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P-Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons.<ref>PMID:1904524</ref> <ref>PMID:7665492</ref> <ref>PMID:10559165</ref> <ref>PMID:11557150</ref> <ref>PMID:21106498</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vibrio subtilis ehrenberg 1835]] | + | [[Category: Bacillus subtilis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Brennan, R G]] | + | [[Category: Synthetic construct]] |
- | [[Category: Hillen, W]] | + | [[Category: Brennan RG]] |
- | [[Category: Schumacher, M A]] | + | [[Category: Hillen W]] |
- | [[Category: Seidel, G]] | + | [[Category: Schumacher MA]] |
- | [[Category: Ccpa]] | + | [[Category: Seidel G]] |
- | [[Category: Complex]]
| + | |
- | [[Category: Crh]]
| + | |
- | [[Category: Dna]]
| + | |
- | [[Category: Laci member]]
| + | |
- | [[Category: Transcription-dna complex]]
| + | |
| Structural highlights
Function
CCPA_BACSU Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. Interacts with either P-Ser-HPr or P-Ser-Crh, leading to the formation of a complex that binds to DNA at the catabolite-response elements (cre). Binding to DNA allows activation or repression of many different genes and operons.[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
In Gram-positive bacteria, the catabolite control protein A (CcpA) functions as the master transcriptional regulator of carbon catabolite repression/regulation (CCR). To effect CCR, CcpA binds a phosphoprotein, either HPr-Ser46-P or Crh-Ser46-P. Although Crh and histidine-containing protein (HPr) are structurally homologous, CcpA binds Crh-Ser46-P more weakly than HPr-Ser46-P. Moreover, Crh can form domain-swapped dimers, which have been hypothesized to be functionally relevant in CCR. To understand the molecular mechanism of Crh-Ser46-P regulation of CCR, we determined the structure of a CcpA-(Crh-Ser46-P)-DNA complex. The structure reveals that Crh-Ser46-P does not bind CcpA as a dimer but rather interacts with CcpA as a monomer in a manner similar to that of HPr-Ser46-P. The reduced affinity of Crh-Ser46-P for CcpA as compared with that of HPr-Ser46 P is explained by weaker Crh-Ser46-P interactions in its contact region I to CcpA, which causes this region to shift away from CcpA. Nonetheless, the interface between CcpA and helix alpha 2 of the second contact region (contact region II) of Crh-Ser46-P is maintained. This latter finding demonstrates that this contact region is necessary and sufficient to throw the allosteric switch to activate cre binding by CcpA.
Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation.,Schumacher MA, Seidel G, Hillen W, Brennan RG J Biol Chem. 2006 Mar 10;281(10):6793-800. Epub 2005 Nov 29. PMID:16316990[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575-84. PMID:1904524
- ↑ Kim JH, Guvener ZT, Cho JY, Chung KC, Chambliss GH. Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J Bacteriol. 1995 Sep;177(17):5129-34. PMID:7665492
- ↑ Tobisch S, Zuhlke D, Bernhardt J, Stulke J, Hecker M. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol. 1999 Nov;181(22):6996-7004. PMID:10559165
- ↑ Ludwig H, Stulke J. The Bacillus subtilis catabolite control protein CcpA exerts all its regulatory functions by DNA-binding. FEMS Microbiol Lett. 2001 Sep 11;203(1):125-9. PMID:11557150
- ↑ Schumacher MA, Sprehe M, Bartholomae M, Hillen W, Brennan RG. Structures of carbon catabolite protein A-(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators. Nucleic Acids Res. 2010 Nov 23. PMID:21106498 doi:10.1093/nar/gkq1177
- ↑ Schumacher MA, Seidel G, Hillen W, Brennan RG. Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation. J Biol Chem. 2006 Mar 10;281(10):6793-800. Epub 2005 Nov 29. PMID:16316990 doi:10.1074/jbc.M509977200
|