|
|
Line 3: |
Line 3: |
| <StructureSection load='4qql' size='340' side='right'caption='[[4qql]], [[Resolution|resolution]] 2.39Å' scene=''> | | <StructureSection load='4qql' size='340' side='right'caption='[[4qql]], [[Resolution|resolution]] 2.39Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4qql]] is a 9 chain structure with sequence from [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QQL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4QQL FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4qql]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QQL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QQL FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4qpy|4qpy]], [[4qq2|4qq2]], [[4qqh|4qqh]], [[4qqo|4qqo]], [[4qqp|4qqp]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qql FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qql OCA], [https://pdbe.org/4qql PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qql RCSB], [https://www.ebi.ac.uk/pdbsum/4qql PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qql ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">C1ql3, C1ql, Ctrp13 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4qql FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qql OCA], [http://pdbe.org/4qql PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4qql RCSB], [http://www.ebi.ac.uk/pdbsum/4qql PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4qql ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/C1QL3_MOUSE C1QL3_MOUSE]] May regulate the number of excitatory synapses that are formed on hippocampus neurons. Has no effect on inhibitory synapses. Plays a role in glucose homeostasis. Via AMPK signaling pathway, stimulates glucose uptake in adipocytes, myotubes and hepatocytes and enhances insulin-stimulated glucose uptake. In a hepatoma cell line, reduces the expression of gluconeogenic enzymes G6PC and PCK1 and hence decreases de novo glucose production.<ref>PMID:21262840</ref> <ref>PMID:21378161</ref> | + | [https://www.uniprot.org/uniprot/C1QL3_MOUSE C1QL3_MOUSE] May regulate the number of excitatory synapses that are formed on hippocampus neurons. Has no effect on inhibitory synapses. Plays a role in glucose homeostasis. Via AMPK signaling pathway, stimulates glucose uptake in adipocytes, myotubes and hepatocytes and enhances insulin-stimulated glucose uptake. In a hepatoma cell line, reduces the expression of gluconeogenic enzymes G6PC and PCK1 and hence decreases de novo glucose production.<ref>PMID:21262840</ref> <ref>PMID:21378161</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 23: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Mus musculus]] |
- | [[Category: Brunger, A T]] | + | [[Category: Brunger AT]] |
- | [[Category: Ressl, S]] | + | [[Category: Ressl S]] |
- | [[Category: Brain-specific angiogenesis inhibitor g-protein coupled receptor 3]]
| + | |
- | [[Category: C1q]]
| + | |
- | [[Category: Extracellular]]
| + | |
- | [[Category: Jelly roll fold]]
| + | |
- | [[Category: Protein binding]]
| + | |
| Structural highlights
Function
C1QL3_MOUSE May regulate the number of excitatory synapses that are formed on hippocampus neurons. Has no effect on inhibitory synapses. Plays a role in glucose homeostasis. Via AMPK signaling pathway, stimulates glucose uptake in adipocytes, myotubes and hepatocytes and enhances insulin-stimulated glucose uptake. In a hepatoma cell line, reduces the expression of gluconeogenic enzymes G6PC and PCK1 and hence decreases de novo glucose production.[1] [2]
Publication Abstract from PubMed
C1q-like (C1QL) -1, -2, and -3 proteins are encoded by homologous genes that are highly expressed in brain. C1QLs bind to brain-specific angiogenesis inhibitor 3 (BAI3), an adhesion-type G-protein coupled receptor that may regulate dendritic morphology by organizing actin filaments. To begin to understand the function of C1QLs, we determined high-resolution crystal structures of the globular C1q-domains of C1QL1, C1QL2, and C1QL3. Each structure is a trimer, with each protomer forming a jelly-roll fold consisting of 10 beta strands. Moreover, C1QL trimers may assemble into higher-order oligomers similar to adiponectin and contain four Ca(2+)-binding sites along the trimeric symmetry axis, as well as additional surface Ca(2+)-binding sites. Mutation of Ca(2+)-coordinating residues along the trimeric symmetry axis lowered the Ca(2+)-binding affinity and protein stability. Our results reveal unique structural features of C1QLs among C1q/TNF superfamily proteins that may be associated with their specific brain functions.
Structures of C1q-like Proteins Reveal Unique Features among the C1q/TNF Superfamily.,Ressl S, Vu BK, Vivona S, Martinelli DC, Sudhof TC, Brunger AT Structure. 2015 Apr 7;23(4):688-99. doi: 10.1016/j.str.2015.01.019. Epub 2015 Mar, 5. PMID:25752542[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Bolliger MF, Martinelli DC, Sudhof TC. The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2534-9. doi: 10.1073/pnas.1019577108., Epub 2011 Jan 24. PMID:21262840 doi:http://dx.doi.org/10.1073/pnas.1019577108
- ↑ Wei Z, Peterson JM, Wong GW. Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation OF AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem. 2011 May 6;286(18):15652-65. doi: 10.1074/jbc.M110.201087. Epub 2011, Mar 4. PMID:21378161 doi:http://dx.doi.org/10.1074/jbc.M110.201087
- ↑ Ressl S, Vu BK, Vivona S, Martinelli DC, Sudhof TC, Brunger AT. Structures of C1q-like Proteins Reveal Unique Features among the C1q/TNF Superfamily. Structure. 2015 Apr 7;23(4):688-99. doi: 10.1016/j.str.2015.01.019. Epub 2015 Mar, 5. PMID:25752542 doi:http://dx.doi.org/10.1016/j.str.2015.01.019
|