|
|
Line 3: |
Line 3: |
| <StructureSection load='4r98' size='340' side='right'caption='[[4r98]], [[Resolution|resolution]] 2.22Å' scene=''> | | <StructureSection load='4r98' size='340' side='right'caption='[[4r98]], [[Resolution|resolution]] 2.22Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4r98]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4R98 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4R98 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4r98]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4R98 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4R98 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNH:AMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNH</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNH:AMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNH</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3hyr|3hyr]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4r98 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4r98 OCA], [https://pdbe.org/4r98 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4r98 RCSB], [https://www.ebi.ac.uk/pdbsum/4r98 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4r98 ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">feoB, b3409, JW3372 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4r98 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4r98 OCA], [http://pdbe.org/4r98 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4r98 RCSB], [http://www.ebi.ac.uk/pdbsum/4r98 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4r98 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/FEOB_ECOLI FEOB_ECOLI]] GTP-driven Fe(2+) uptake system.<ref>PMID:8407793</ref> <ref>PMID:12446835</ref> | + | [https://www.uniprot.org/uniprot/FEOB_ECOLI FEOB_ECOLI] GTP-driven Fe(2+) uptake system.<ref>PMID:8407793</ref> <ref>PMID:12446835</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Jormakka, M]] | + | [[Category: Jormakka M]] |
- | [[Category: Maher, M J]] | + | [[Category: Maher MJ]] |
- | [[Category: Feob]]
| + | |
- | [[Category: Metal transport]]
| + | |
| Structural highlights
Function
FEOB_ECOLI GTP-driven Fe(2+) uptake system.[1] [2]
Publication Abstract from PubMed
The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Galpha proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Gialpha1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Gialpha1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.
A GTPase chimera illustrates an uncoupled nucleotide affinity and release rate, providing insight into the activation mechanism.,Guilfoyle AP, Deshpande CN, Font Sadurni J, Ash MR, Tourle S, Schenk G, Maher MJ, Jormakka M Biophys J. 2014 Dec 16;107(12):L45-8. doi: 10.1016/j.bpj.2014.10.064. PMID:25517170[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kammler M, Schon C, Hantke K. Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol. 1993 Oct;175(19):6212-9. PMID:8407793
- ↑ Marlovits TC, Haase W, Herrmann C, Aller SG, Unger VM. The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16243-8. Epub 2002 Nov 22. PMID:12446835 doi:10.1073/pnas.242338299
- ↑ Guilfoyle AP, Deshpande CN, Font Sadurni J, Ash MR, Tourle S, Schenk G, Maher MJ, Jormakka M. A GTPase chimera illustrates an uncoupled nucleotide affinity and release rate, providing insight into the activation mechanism. Biophys J. 2014 Dec 16;107(12):L45-8. doi: 10.1016/j.bpj.2014.10.064. PMID:25517170 doi:http://dx.doi.org/10.1016/j.bpj.2014.10.064
|