Sandbox Reserved 1769

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 14: Line 14:
Structures were determined by [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryogenic electron microscopy (Cryo-EM)] of NTCP in complex with antibodies or nanobodies, revealing two key conformations in NTCP's transport mechanism. There are nine transmembrane [https://en.wikipedia.org/wiki/Alpha_helix alpha helices] traversing the plasma membrane, with the [https://en.wikipedia.org/wiki/N-terminus N-terminus] located on the extracellular side of the plasma membrane and the [https://en.wikipedia.org/wiki/C-terminus C-terminus] located on the intracellular side. The panel domain is formed by transmembrane helices TM1, TM5, and TM6. The core domain is formed by the packing of a helix bundle consisting of TM2, TM3, and TM4 with another helix bundle consisting of TM7, TM8, and TM9. The two helix bundles are related by pseudo two-fold symmetry. Transmembrane helices are connected by short loops as well as extracellular and intracellular alpha helices that lie nearly parallel to the membrane.
Structures were determined by [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryogenic electron microscopy (Cryo-EM)] of NTCP in complex with antibodies or nanobodies, revealing two key conformations in NTCP's transport mechanism. There are nine transmembrane [https://en.wikipedia.org/wiki/Alpha_helix alpha helices] traversing the plasma membrane, with the [https://en.wikipedia.org/wiki/N-terminus N-terminus] located on the extracellular side of the plasma membrane and the [https://en.wikipedia.org/wiki/C-terminus C-terminus] located on the intracellular side. The panel domain is formed by transmembrane helices TM1, TM5, and TM6. The core domain is formed by the packing of a helix bundle consisting of TM2, TM3, and TM4 with another helix bundle consisting of TM7, TM8, and TM9. The two helix bundles are related by pseudo two-fold symmetry. Transmembrane helices are connected by short loops as well as extracellular and intracellular alpha helices that lie nearly parallel to the membrane.
- 
-
=== Proline/Glycine Hinge ===
 
=== Domains ===
=== Domains ===
-
NTCP contains two characteristic domains, the core and panel domains. Movement of these two domains characterizes the two known conformational states implied in the mechanism of bile salt uptake.
+
NTCP contains two characteristic domains: the core and panel domains. Movement of these two domains allows recognition and transport of bile salts into hepatocytes.
*<b><font color="orange">Panel Domain</font></b>: 1-44, 155-208
*<b><font color="orange">Panel Domain</font></b>: 1-44, 155-208
*<b><font color="#0040e0">Core domain</font></b>: 45-154, 209-309
*<b><font color="#0040e0">Core domain</font></b>: 45-154, 209-309
 +
 +
=== Proline/Glycine Hinge ===
 +
Glycine and proline residues in the connecting loops and extra- and intracellular helices act as hinges in the mechanism of bile salt uptake. The flexibility allows separation of the core and panel domains, creating a pore open to the extracellular space and exposing critical Na+ binding sites. Once substrate binds the open-pore state, this hinge allows transition to close this pore relative to the extracellular side and open to the cytoplasmic side, thus allowing release of substrate into the cell.
 +
 +
=== Sodium Binding Sites ===
=== Sodium Binding Sites ===
Line 29: Line 32:
=== Mechanism of Bile Salt Uptake ===
=== Mechanism of Bile Salt Uptake ===
 +
 +
Bile salts recognize and bind to the open-pore state.
<scene name='95/952697/Ntcp_open-pore_state_surface/1'>NTCP Open-Pore State</scene>
<scene name='95/952697/Ntcp_open-pore_state_surface/1'>NTCP Open-Pore State</scene>
<scene name='95/952697/Ntcp_inward_facing_state/1'>Inward Facing State</scene>
<scene name='95/952697/Ntcp_inward_facing_state/1'>Inward Facing State</scene>
=== Mechanism of HBV/HDV Infection ===
=== Mechanism of HBV/HDV Infection ===
-
HBV/HDV infection is reliant on multiple properties that must be present on both the virus itself and the NTCP protein. First, the HBV/HDV capsid must be myristoylated (INSERT BLUE LINK) in order for proper recognition by NTCP. Residues 2-48 are the most significant residues of HBV/HDV that are highly conserved amongst these viruses that are vital for infection. Specifically, residues 8-17 on HBV/HDV have been identified as the most important. These residues are NPLGFFPDHQ. There are two proposed mechanisms as to how exactly HBV/HDV bind to NTCP and enter the cell. In both mechanisms, there is an initial translocation of the myristoylated preS1 HBV/HDV virus to interact with the host cell (hepatocyte). The first mechanism involves the myristoyl group of preS1 binding to the host cell membrane, not NTCP, and residues P8-H17 interacting with NTCP residues 157-165. The second mechanism involves the myristoyl group of preS1 binding directly into the open-pore of NTCP interacting with residues 157-165. In both proposed mechanisms, the interactions with the extracellular residues 84-87 of NTCP is unknown.
+
 
 +
The HBV/HDV capsid must be myristoylated (INSERT BLUE LINK) in order for proper recognition by NTCP. Residues 2-48 are the most significant residues of HBV/HDV that are highly conserved amongst these viruses that are vital for infection. Specifically, residues 8-17 on HBV/HDV have been identified as the most important. These residues are NPLGFFPDHQ. There are two proposed mechanisms as to how exactly HBV/HDV bind to NTCP and enter the cell. In both mechanisms, there is an initial translocation of the myristoylated preS1 HBV/HDV virus to interact with the host cell (hepatocyte). The first mechanism involves the myristoyl group of preS1 binding to the host cell membrane, not NTCP, and residues P8-H17 interacting with NTCP residues 157-165. The second mechanism involves the myristoyl group of preS1 binding directly into the open-pore of NTCP interacting with residues 157-165. In both proposed mechanisms, the interactions with the extracellular residues 84-87 of NTCP is unknown.

Revision as of 17:46, 20 March 2023

Sodium-taurocholate Co-transporting Polypeptide

Sodium-taurocholate co-transporting Polypeptide (NTCP) 7PQQ

Drag the structure with the mouse to rotate

References

  1. Park JH, Iwamoto M, Yun JH, Uchikubo-Kamo T, Son D, Jin Z, Yoshida H, Ohki M, Ishimoto N, Mizutani K, Oshima M, Muramatsu M, Wakita T, Shirouzu M, Liu K, Uemura T, Nomura N, Iwata S, Watashi K, Tame JRH, Nishizawa T, Lee W, Park SY. Structural insights into the HBV receptor and bile acid transporter NTCP. Nature. 2022 Jun;606(7916):1027-1031. PMID:35580630 doi:10.1038/s41586-022-04857-0
  2. Goutam K, Ielasi FS, Pardon E, Steyaert J, Reyes N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature. 2022 Jun;606(7916):1015-1020. PMID:35545671 doi:10.1038/s41586-022-04723-z
  3. Liu H, Irobalieva RN, Bang-Sørensen R, Nosol K, Mukherjee S, Agrawal P, Stieger B, Kossiakoff AA, Locher KP. Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver. Cell Res. 2022 Aug;32(8):773-776. PMID:35726088 doi:10.1038/s41422-022-00680-4
  4. Asami J, Kimura KT, Fujita-Fujiharu Y, Ishida H, Zhang Z, Nomura Y, Liu K, Uemura T, Sato Y, Ono M, Yamamoto M, Noda T, Shigematsu H, Drew D, Iwata S, Shimizu T, Nomura N, Ohto U. Structure of the bile acid transporter and HBV receptor NTCP. Nature. 2022 Jun;606(7916):1021-1026. PMID:35580629 doi:10.1038/s41586-022-04845-4
  5. Qi X, Li W. Unlocking the secrets to human NTCP structure. Innovation (Camb). 2022 Aug 1;3(5):100294. PMID:36032196 doi:10.1016/j.xinn.2022.100294

Student Contributors

  • Ben Minor
  • Maggie Samm
  • Zac Stanley
Personal tools