|
|
| Line 3: |
Line 3: |
| | <StructureSection load='4uph' size='340' side='right'caption='[[4uph]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='4uph' size='340' side='right'caption='[[4uph]], [[Resolution|resolution]] 2.50Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4uph]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Agrrk Agrrk]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4UPH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4UPH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4uph]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Agrobacterium_radiobacter_K84 Agrobacterium radiobacter K84]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4UPH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4UPH FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=DDZ:3,3-DIHYDROXY+L-ALANINE'>DDZ</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| - | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=DDZ:3,3-DIHYDROXY+L-ALANINE'>DDZ</scene></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4uph FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4uph OCA], [https://pdbe.org/4uph PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4uph RCSB], [https://www.ebi.ac.uk/pdbsum/4uph PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4uph ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4uph FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4uph OCA], [http://pdbe.org/4uph PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4uph RCSB], [http://www.ebi.ac.uk/pdbsum/4uph PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4uph ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/B9JE48_AGRRK B9JE48_AGRRK] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 21: |
Line 22: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Agrrk]] | + | [[Category: Agrobacterium radiobacter K84]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Fischer, G]] | + | [[Category: Fischer G]] |
| - | [[Category: Hollfelder, F]] | + | [[Category: Hollfelder F]] |
| - | [[Category: Hyvonen, M]] | + | [[Category: Hyvonen M]] |
| - | [[Category: Loo, B v]] | + | [[Category: Loo Bv]] |
| - | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
B9JE48_AGRRK
Publication Abstract from PubMed
Highly proficient, promiscuous enzymes can be springboards for functional evolution, able to avoid loss of function during adaptation by their capacity to promote multiple reactions. We employ systematic comparative study of structure, sequence and substrate specificity to track the evolution of specificity and reactivity between promiscuous members of clades of the alkaline phosphatase (AP) superfamily. Construction of a phylogenetic tree of protein sequences maps out the likely transition zone between arylsulfatases (ASs) and phosphonate monoester hydrolases (PMHs). Kinetic analysis shows that all enzymes characterized have four chemically distinct phospho- and sulfoesterase activities, with rate accelerations ranging from 1011-1017-fold for their primary and 109-1012-fold for their promiscuous reactions, suggesting that catalytic promiscuity is widespread in the AP-superfamily. This functional characterization and crystallography reveal a novel class of ASs that is so similar in sequence to known PMHs that it had not been recognized as having diverged in function. Based on analysis of snapshots of catalytic promiscuity 'in transition' we develop possible models that would allow functional evolution and determine scenarios for trade-off between multiple activities. For the new ASs we observe largely invariant substrate specificity that would facilitate the transition from ASs to PMHs via trade-off-free molecular exaptation, i.e. evolution without initial loss of primary activity and specificity toward the original substrate. This ability to bypass low activity generalists provides a molecular solution to avoid adaptive conflict.
Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily.,van Loo B, Bayer CD, Fischer G, Jonas S, Valkov E, Mohamed MF, Vorobieva A, Dutruel C, Hyvonen M, Hollfelder F J Am Chem Soc. 2018 Nov 30. doi: 10.1021/jacs.8b10290. PMID:30497259[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ van Loo B, Bayer CD, Fischer G, Jonas S, Valkov E, Mohamed MF, Vorobieva A, Dutruel C, Hyvonen M, Hollfelder F. Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily. J Am Chem Soc. 2018 Nov 30. doi: 10.1021/jacs.8b10290. PMID:30497259 doi:http://dx.doi.org/10.1021/jacs.8b10290
|