Sandbox Reserved 1774

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 18: Line 18:
== TSHR Activation ==
== TSHR Activation ==
=== Hinge Motion ===
=== Hinge Motion ===
-
Central to the biological function of TSHR is its hinge motion which allows for transition between active and inactive states. Deformation of the hinge region accommodates up-and-down rotation of the extracellular domain as a rigid body about an imaginary 55 degree axis. When the extracellular domain is upright, the receptor actively signals for thyroid hormone production. When the extracellular domain is hinged down, the receptor is inactive and no signaling activation occurs. Notably, transition between the two states occurs spontaneously; favoring of the active or inactive conformation is influenced by hinge interactions and ligand binding <ref name="Faust">PMID:35940205</ref>.
+
Central to the biological function of TSHR is its hinge motion which allows for transition between active and inactive states <scene name='95/952702/Overlay/2'>active and inactive states</scene>. Deformation of the hinge region accommodates up-and-down rotation of the extracellular domain as a rigid body about an imaginary 55 degree axis. When the extracellular domain is upright, the receptor actively signals for thyroid hormone production. When the extracellular domain is hinged down, the receptor is inactive and no signaling activation occurs. Notably, transition between the two states occurs spontaneously; favoring of the active or inactive conformation is influenced by hinge interactions and ligand binding <ref name="Faust">PMID:35940205</ref>.
-
At the following link is an animation of TSHR transition between the two states: [[Image:TSHR_MorphBetterAngle.mp4|Figure 1]]. The following trends can be observed in the video or viewed through an <scene name='95/952702/Overlay/2'>overlay</scene> in the molecule viewer:
+
Two observations help to explain how hinging of the extracellular domain can lead to signaling activation:
#Slinky-like deformation of the hinge region shifts the <scene name='95/952702/P10_movement/2'>N-terminus of the p10</scene> region 5 Angstroms over the course of the movement <ref name="Faust" />.
#Slinky-like deformation of the hinge region shifts the <scene name='95/952702/P10_movement/2'>N-terminus of the p10</scene> region 5 Angstroms over the course of the movement <ref name="Faust" />.
#Stretching of the hinge pulls on the linked helices in the transmembrane domain, shifting <scene name='95/952702/Helix7_movement/2'>helix 7</scene> about 4 Angstroms inward <ref name="Faust" />.
#Stretching of the hinge pulls on the linked helices in the transmembrane domain, shifting <scene name='95/952702/Helix7_movement/2'>helix 7</scene> about 4 Angstroms inward <ref name="Faust" />.
 +
An animation of the hinge motion can be viewed here: [[Image:TSHR_MorphBetterAngle.mp4|Figure 1]].
=== Stabilizing Interactions in the Hinge ===
=== Stabilizing Interactions in the Hinge ===

Revision as of 17:27, 3 April 2023

This Sandbox is Reserved from February 27 through August 31, 2023 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1765 through Sandbox Reserved 1795.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Word Blerb

Drag the structure with the mouse to rotate
Personal tools