Sandbox Reserved 1777
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='7pui' size='350' side='right' caption='SHOC2-PP1C-MRAS (PDB entry [[7pui]])' scene='95/952704/Smpcolored/1'> | <StructureSection load='7pui' size='350' side='right' caption='SHOC2-PP1C-MRAS (PDB entry [[7pui]])' scene='95/952704/Smpcolored/1'> | ||
=Introduction= | =Introduction= | ||
- | [[Image: Image 4-3-23 at 10.02 AM.jpeg|300px|right|thumb|<font size="3.5"><div style="text-align: center;">Schematic representation of SHOC2-PP1C-MRAS pathway after all domains are bound together. </div></font>]] | + | [[Image: Image 4-3-23 at 10.02 AM.jpeg|300px|right|thumb|<font size="3.5"><div style="text-align: center;">'''Figure 1'''. Schematic representation of SHOC2-PP1C-MRAS pathway after all domains are bound together. </div></font>]] |
SHOC2-PP1C-MRAS is a human enzyme that is involved in regulating cell proliferation and division <Ref name='Astrain'>Bernal Astrain G, Nikolova M, Smith MJ. Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans. 2022 Apr 29;50(2):921-933. doi: 10.1042/BST20211166. [https://doi.org/10.1042/BST20211166. DOI:10.1042/BST20211166] </Ref>. The enzyme is involved in the vast RAS-MAPK pathway, which is initially activated by an extracellular growth factor binding to a membrane bound RAS [https://www.mechanobio.info/what-is-mechanosignaling/what-are-small-gtpases/what-are-ras-gtpases/. GTPase] such as HRAS, NRAS, or KRAS. [https://www.frontiersin.org/articles/10.3389/fonc.2019.01088/full#:~:text=In%20human%20cells%2C%20three%20closely,proliferation%20and%20survival%20among%20others. RAS-GTPases] are a family of proteins that work by functioning as molecular switches. This occurs from the protein alternating between binding GTP to be active and GDP to be inactive <ref name="Astrain" />. After activation via an extracellular growth factor, the RAS-GTPase enzyme binds GTP, which activates [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311149/#:~:text=Full%20activation%20of%20Raf%20requires,plasma%20membrane%20(Roy%20et%20al RAF]<Ref name='Molina'>Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006 Jan;1(1):7-9. [https://doi.org/10.1016/S1556-0864(15)31506-9. DOI:10.1016/S1556-0864(15)31506-9]. </Ref> by phosphorylating the serine 259 residue. RAF triggers a series of downstream signaling pathways including MEK and ERK. The Ras/Raf/MEK/ERK pathway is a critical signaling cascade for activating transcription factors and regulating gene expression<Ref name='Li'>Li, L., Zhao, G. D., Shi, Z. et. al.The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncology letters, 12(5), 3045–3050. [https://doi.org/10.3892/ol.2016.5110. DOI:10.3892/ol.2016.5110]. </Ref>. | SHOC2-PP1C-MRAS is a human enzyme that is involved in regulating cell proliferation and division <Ref name='Astrain'>Bernal Astrain G, Nikolova M, Smith MJ. Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans. 2022 Apr 29;50(2):921-933. doi: 10.1042/BST20211166. [https://doi.org/10.1042/BST20211166. DOI:10.1042/BST20211166] </Ref>. The enzyme is involved in the vast RAS-MAPK pathway, which is initially activated by an extracellular growth factor binding to a membrane bound RAS [https://www.mechanobio.info/what-is-mechanosignaling/what-are-small-gtpases/what-are-ras-gtpases/. GTPase] such as HRAS, NRAS, or KRAS. [https://www.frontiersin.org/articles/10.3389/fonc.2019.01088/full#:~:text=In%20human%20cells%2C%20three%20closely,proliferation%20and%20survival%20among%20others. RAS-GTPases] are a family of proteins that work by functioning as molecular switches. This occurs from the protein alternating between binding GTP to be active and GDP to be inactive <ref name="Astrain" />. After activation via an extracellular growth factor, the RAS-GTPase enzyme binds GTP, which activates [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311149/#:~:text=Full%20activation%20of%20Raf%20requires,plasma%20membrane%20(Roy%20et%20al RAF]<Ref name='Molina'>Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006 Jan;1(1):7-9. [https://doi.org/10.1016/S1556-0864(15)31506-9. DOI:10.1016/S1556-0864(15)31506-9]. </Ref> by phosphorylating the serine 259 residue. RAF triggers a series of downstream signaling pathways including MEK and ERK. The Ras/Raf/MEK/ERK pathway is a critical signaling cascade for activating transcription factors and regulating gene expression<Ref name='Li'>Li, L., Zhao, G. D., Shi, Z. et. al.The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncology letters, 12(5), 3045–3050. [https://doi.org/10.3892/ol.2016.5110. DOI:10.3892/ol.2016.5110]. </Ref>. | ||
Line 9: | Line 9: | ||
=Structure= | =Structure= | ||
==Overview== | ==Overview== | ||
- | [[Image:SHOC2-PP1C-MRAS Surface.JPG|300px|right|thumb|<font size="3.5"><div style="text-align: center;">'''Figure 1'''. Surface representation of SHOC2-PP1C-MRAS from PDB 7pui. Blue is SHOC2, orange is PP1C and green is MRAS. </div></font>]] | ||
The enzyme requires 3 domains, SHOC2(blue), PP1C(orange), and MRAS(green), to form the active enzyme (SMP complex), also known as a holoenzyme (Figure 1)<Ref name='Hauseman'>Hauseman, Z.J., Fodor, M., Dhembi, A. et al. Structure of the MRAS–SHOC2–PP1C phosphatase complex. Nature 609, 416–423 (2022). doi: 10.1038/s41586-022-05086-1. [https://doi.org/10.1038/s41586-022-05086-1. DOI:10.1038/s41586-022-05086-1]. </Ref>. The SMP complex was determined via cryo-electron microscopy as well as x-ray diffraction. These studies found that PP1C and MRAS occupy the concave surface of SHOC2, leaving the catalytic site of PP1C and the substrate binding cleft in MRAS exposed. | The enzyme requires 3 domains, SHOC2(blue), PP1C(orange), and MRAS(green), to form the active enzyme (SMP complex), also known as a holoenzyme (Figure 1)<Ref name='Hauseman'>Hauseman, Z.J., Fodor, M., Dhembi, A. et al. Structure of the MRAS–SHOC2–PP1C phosphatase complex. Nature 609, 416–423 (2022). doi: 10.1038/s41586-022-05086-1. [https://doi.org/10.1038/s41586-022-05086-1. DOI:10.1038/s41586-022-05086-1]. </Ref>. The SMP complex was determined via cryo-electron microscopy as well as x-ray diffraction. These studies found that PP1C and MRAS occupy the concave surface of SHOC2, leaving the catalytic site of PP1C and the substrate binding cleft in MRAS exposed. | ||
==SHOC2== | ==SHOC2== | ||
+ | [[Image:SHOC2-PP1C-MRAS Surface.JPG|300px|right|thumb|<font size="3.5"><div style="text-align: center;">'''Figure 2'''. Surface representation of SHOC2-PP1C-MRAS from PDB 7pui. Blue is SHOC2, orange is PP1C and green is MRAS. </div></font>]] | ||
SHOC2 is a scaffolding protein which acts as a cradle to bind PP1C and MRAS, allowing for the holoenzyme to be functional. The <scene name='95/952705/Shoc2_structure/1'>structure of SHOC2</scene> is a leucine rich repeat ([https://en.wikipedia.org/wiki/Leucine-rich_repeat LRR]) protein that consists of 20 consecutive <scene name='95/952706/Shoc2_structure/6'>LRR regions</scene>. This motif results in an extended beta sheet on the inner concavity of the protein surface with alpha helices facing outward. This results in a largely hydrophobic core<Ref name= 'Hahn'> Kwon, J. J., & Hahn, W. C. A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Molecular and cellular biology, 41(4), e00627-20 (2021). doi:10.1128/MCB.00627-20. [http://doi.org/10.1128/MCB.00627-20. DOI: 10.1128/MCB.00627-20]. </Ref>. | SHOC2 is a scaffolding protein which acts as a cradle to bind PP1C and MRAS, allowing for the holoenzyme to be functional. The <scene name='95/952705/Shoc2_structure/1'>structure of SHOC2</scene> is a leucine rich repeat ([https://en.wikipedia.org/wiki/Leucine-rich_repeat LRR]) protein that consists of 20 consecutive <scene name='95/952706/Shoc2_structure/6'>LRR regions</scene>. This motif results in an extended beta sheet on the inner concavity of the protein surface with alpha helices facing outward. This results in a largely hydrophobic core<Ref name= 'Hahn'> Kwon, J. J., & Hahn, W. C. A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Molecular and cellular biology, 41(4), e00627-20 (2021). doi:10.1128/MCB.00627-20. [http://doi.org/10.1128/MCB.00627-20. DOI: 10.1128/MCB.00627-20]. </Ref>. | ||
Revision as of 19:20, 3 April 2023
This Sandbox is Reserved from February 27 through August 31, 2023 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1765 through Sandbox Reserved 1795. |
To get started:
More help: Help:Editing |
|
References
- ↑ 1.0 1.1 Bernal Astrain G, Nikolova M, Smith MJ. Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans. 2022 Apr 29;50(2):921-933. doi: 10.1042/BST20211166. DOI:10.1042/BST20211166
- ↑ Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006 Jan;1(1):7-9. DOI:10.1016/S1556-0864(15)31506-9.
- ↑ Li, L., Zhao, G. D., Shi, Z. et. al.The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncology letters, 12(5), 3045–3050. DOI:10.3892/ol.2016.5110.
- ↑ 4.0 4.1 Hauseman, Z.J., Fodor, M., Dhembi, A. et al. Structure of the MRAS–SHOC2–PP1C phosphatase complex. Nature 609, 416–423 (2022). doi: 10.1038/s41586-022-05086-1. DOI:10.1038/s41586-022-05086-1.
- ↑ Kwon, J. J., & Hahn, W. C. A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Molecular and cellular biology, 41(4), e00627-20 (2021). doi:10.1128/MCB.00627-20. DOI: 10.1128/MCB.00627-20.
- ↑ Young, L., Rodriguez-Viciana, P. MRAS: A Close but Understudied Member of the RAS Family. Cold Spring Harbor Perspectives in Medicine (2018). doi: 10.1101/cshperspect.a033621. DOI: 0.1101/cshperspect.a033621.
- ↑ Daniel A. Bonsor, Patrick Alexander, Kelly Snead, Nicole Hartig, Matthew Drew, Simon Messing, Lorenzo I. Finci, Dwight V. Nissley, Frank McCormick, Dominic Esposito, Pablo Rodrigiguez-Viciana, Andrew G. Stephen, Dhirendra K. Simanshu. Structure of the SHOC2–MRAS–PP1C complex provides insights into RAF activation and Noonan syndrome. bioRxiv. 2022.05.10.491335. doi: 10.1101/2022.05.10.491335. DOI:10.1101/2022.05.10.491335.
- ↑ 8.0 8.1 Kwon, J.J., Hajian, B., Bian, Y. et al. Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex. Nature 609, 408–415 (2022).doi: 10.1038/s41586-022-04928-2. DOI:10.1038/s41586-022-04928-2
- ↑ 9.0 9.1 9.2 Kwon, J., Jajian, B., Bian, Y. et al. Comprehensive structure-function evaluation of the SHOC2 holophosphatase reveals disease mechanisms and therapeutic opportunities. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022. DOI: 10.1158/1538-7445.AM2022-LB029.
- ↑ 10.0 10.1 Lavoie, H., Therrien, M. Structural keys unlock RAS–MAPK cellular signalling pathway. Nature 609, 248-249 (2022). doi: 10.1038/d41586-022-02189-7. DOI:10.1038/d41586-022-02189-7.
- ↑ Liau NPD, Johnson MC, Izadi S, Gerosa L, Hammel M, Bruning JM, Wendorff TJ, Phung W, Hymowitz SG, Sudhamsu J. Structural basis for SHOC2 modulation of RAS signalling. Nature. 2022 Jun 29. pii: 10.1038/s41586-022-04838-3. doi:, 10.1038/s41586-022-04838-3. PMID:35768504 doi:http://dx.doi.org/10.1038/s41586-022-04838-3