|
|
Line 3: |
Line 3: |
| <StructureSection load='4wn4' size='340' side='right'caption='[[4wn4]], [[Resolution|resolution]] 3.85Å' scene=''> | | <StructureSection load='4wn4' size='340' side='right'caption='[[4wn4]], [[Resolution|resolution]] 3.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4wn4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Miscellaneous_nucleic_acid Miscellaneous nucleic acid]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WN4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4WN4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4wn4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WN4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4WN4 FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4pjr|4pjr]], [[4pjs|4pjs]], [[4pjq|4pjq]], [[4pjp|4pjp]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4wn4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4wn4 OCA], [https://pdbe.org/4wn4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4wn4 RCSB], [https://www.ebi.ac.uk/pdbsum/4wn4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4wn4 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4wn4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4wn4 OCA], [http://pdbe.org/4wn4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4wn4 RCSB], [http://www.ebi.ac.uk/pdbsum/4wn4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4wn4 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 22: |
Line 21: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Miscellaneous nucleic acid]] | + | [[Category: Synthetic construct]] |
- | [[Category: Chia, T S]] | + | [[Category: Chia TS]] |
- | [[Category: Coquille, S C]] | + | [[Category: Coquille SC]] |
- | [[Category: Filipovska, A]] | + | [[Category: Filipovska A]] |
- | [[Category: Lingford, J P]] | + | [[Category: Lingford JP]] |
- | [[Category: Rackham, O]] | + | [[Category: Rackham O]] |
- | [[Category: Rajappa, L]] | + | [[Category: Rajappa L]] |
- | [[Category: Razif, M F.M]] | + | [[Category: Razif MFM]] |
- | [[Category: Thore, S]] | + | [[Category: Thore S]] |
- | [[Category: De novo protein]]
| + | |
- | [[Category: Designer rna-binding protein]]
| + | |
- | [[Category: Pentatricopeptide repeat]]
| + | |
- | [[Category: Rna-protein interaction]]
| + | |
- | [[Category: Synthetic biology]]
| + | |
| Structural highlights
Publication Abstract from PubMed
Pentatricopeptide repeat (PPR) proteins control diverse aspects of RNA metabolism in eukaryotic cells. Although recent computational and structural studies have provided insights into RNA recognition by PPR proteins, their highly insoluble nature and inconsistencies between predicted and observed modes of RNA binding have restricted our understanding of their biological functions and their use as tools. Here we use a consensus design strategy to create artificial PPR domains that are structurally robust and can be programmed for sequence-specific RNA binding. The atomic structures of these artificial PPR domains elucidate the structural basis for their stability and modelling of RNA-protein interactions provides mechanistic insights into the importance of RNA-binding residues and suggests modes of PPR-RNA association. The modular mode of RNA binding by PPR proteins holds great promise for the engineering of new tools to target RNA and to understand the mechanisms of gene regulation by natural PPR proteins.
An artificial PPR scaffold for programmable RNA recognition.,Coquille S, Filipovska A, Chia T, Rajappa L, Lingford JP, Razif MF, Thore S, Rackham O Nat Commun. 2014 Dec 17;5:5729. doi: 10.1038/ncomms6729. PMID:25517350[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Coquille S, Filipovska A, Chia T, Rajappa L, Lingford JP, Razif MF, Thore S, Rackham O. An artificial PPR scaffold for programmable RNA recognition. Nat Commun. 2014 Dec 17;5:5729. doi: 10.1038/ncomms6729. PMID:25517350 doi:http://dx.doi.org/10.1038/ncomms6729
|