Histamine H1 receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
<scene name='78/784820/Doxepin_ball_stick/1'>Doxepin</scene> was originally made as a tricyclic antidepressant, but it also is a potent antihistamine <ref>PMID: 39202</ref> binds among the transmembrane alpha helices. Binding is stabilized by a number of <scene name='78/784820/Interacting_amino_acids/4'>interactions with amino acids</scene>. Like many G protein coupled receptors, the bottom of the binding pocket contains a conserved <scene name='78/784820/Trp_428/1'>tryptophan</scene> residue. Interestingly, second generation antihistamines take advantage of an anion binding site formed by <scene name='78/784820/Lys/2'>two lysine residues</scene>; in this structure, they interact with a phosphate.
<scene name='78/784820/Doxepin_ball_stick/1'>Doxepin</scene> was originally made as a tricyclic antidepressant, but it also is a potent antihistamine <ref>PMID: 39202</ref> binds among the transmembrane alpha helices. Binding is stabilized by a number of <scene name='78/784820/Interacting_amino_acids/4'>interactions with amino acids</scene>. Like many G protein coupled receptors, the bottom of the binding pocket contains a conserved <scene name='78/784820/Trp_428/1'>tryptophan</scene> residue. Interestingly, second generation antihistamines take advantage of an anion binding site formed by <scene name='78/784820/Lys/2'>two lysine residues</scene>; in this structure, they interact with a phosphate.
-
Like other [[G protein-coupled receptor]]s, the Histamine H1 Receptor contains a <scene name='78/784820/Dry_motif/1'>conserved DRY</scene> (aspartate (D), arginine (R), tyrosine (Y)) motif in the seven helix transmembrane surface near the cytosolic face. In some G protein receptors, an "ionic lock" interaction between the asparate and arginine in this motif stabilizes the inactive state<ref>PMID:17192495</ref>; however, in the Histamine H1 receptor, Arginine 125 forms a hydrogen bond with <scene name='78/784820/Arg125_gln_416_salt_bridge/1'>glutamine 416</scene>, which stabilizes the inactive state.
+
Like other [[G protein-coupled receptor]]s, the Histamine H1 Receptor contains a <scene name='78/784820/Dry_motif/1'>conserved DRY</scene> (aspartate (D), arginine (R), tyrosine (Y)) motif in the seven helix transmembrane surface near <scene name='78/784820/Dry_motif/4'>the cytosolic face</scene>. In some G protein receptors, an "ionic lock" interaction between the asparate and arginine in this motif stabilizes the inactive state<ref>PMID:17192495</ref>; however, in the Histamine H1 receptor, Arginine 125 forms a hydrogen bond with <scene name='78/784820/Arg125_gln_416_salt_bridge/1'>glutamine 416</scene>, which stabilizes the inactive state.
See also:
See also:

Revision as of 04:08, 9 April 2023

Histamine H1 Receptor

Histamine H1 receptor with an antagonist doxepin, lipid and phosphate (PDB code 3rze)

Drag the structure with the mouse to rotate

3D structures of histamine H1 receptor

Updated on 09-April-2023

3rze - hHHR + doxepin + lipid + phosphate - human
7dfl - hHHR + guanine nucleotide-binding protein + scFv + histamine - Cryo EM

References

  1. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S. Structure of the human histamine H1 receptor complex with doxepin. Nature. 2011 Jun 22;475(7354):65-70. doi: 10.1038/nature10236. PMID:21697825 doi:10.1038/nature10236
  2. Richelson E. Tricyclic antidepressants and histamine H1 receptors. Mayo Clin Proc. 1979 Oct;54(10):669-74. PMID:39202
  3. Rovati GE, Capra V, Neubig RR. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol. 2007 Apr;71(4):959-64. doi: 10.1124/mol.106.029470. Epub 2006 Dec , 27. PMID:17192495 doi:http://dx.doi.org/10.1124/mol.106.029470

Proteopedia Page Contributors and Editors (what is this?)

Ann Taylor, Michal Harel, Alexander Berchansky

Personal tools