Sandbox Reserved 1789
From Proteopedia
(Difference between revisions)
Line 19: | Line 19: | ||
=== SHOC2 === | === SHOC2 === | ||
- | <scene name='95/952717/Shoc2/1'>SHOC2</scene> is a scaffold protein composed of 20 leucine-rich repeat (LRR) domains that form a solenoid structure <ref name="Hauseman"/>. The leucine rich region forms a concave hydrophobic core which is necessary for binding with PP1C and MRAS. SHOC2 is the crucial mediator for SHOC2-PP1C-MRAS complex formation <ref name="Hauseman"/>. The leucine rich domain is very important in creating selectivity for the PP1C protein, as that protein is used for so many other complex pathways <ref name="Hauseman"/>. The LRR domains are stabilized by an N-terminal flanking 𝝰-helix and a C-terminal helix-turn-helix <ref name="Kwon">PMID:35831509</ref>. Alongside the conserved leucine residues in the LRR domain, there is a group of conserved asparagine residues that creates a stabilizing “asparagine ladder” that is necessary for the LRR fold, giving the SHOC2 its concave structure <ref name="Kwon" />. | + | <scene name='95/952717/Shoc2/1'>SHOC2</scene> is a scaffold protein composed of 20 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901792/. leucine-rich repeat (LRR)] domains that form a solenoid structure <ref name="Hauseman"/>. The leucine rich region forms a concave hydrophobic core which is necessary for binding with PP1C and MRAS. SHOC2 is the crucial mediator for SHOC2-PP1C-MRAS complex formation <ref name="Hauseman"/>. The leucine rich domain is very important in creating selectivity for the PP1C protein, as that protein is used for so many other complex pathways <ref name="Hauseman"/>. The LRR domains are stabilized by an N-terminal flanking 𝝰-helix and a C-terminal helix-turn-helix <ref name="Kwon">PMID:35831509</ref>. Alongside the conserved leucine residues in the LRR domain, there is a group of conserved asparagine residues that creates a stabilizing [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184636/. “asparagine ladder”] that is necessary for the LRR fold, giving the SHOC2 its concave structure <ref name="Kwon" />. |
Revision as of 17:31, 14 April 2023
This page, as it appeared on June 14, 2016, was featured in this article in the journal Biochemistry and Molecular Biology Education.
SHOC2-PP1C-MRAS
|
Student Contributors
Madeline Gilbert Inaya Patel Rushda Hussein