Sandbox Reserved 1733
From Proteopedia
(Difference between revisions)
Line 8: | Line 8: | ||
== Function == | == Function == | ||
- | Bacteriorhodopsin functions as a proton pump that transports H+ across the gradient and is driven by green light(500nm-650nm).<ref>Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. ''Isr. J. Chem''. '''1995''', 35 (3-4), 365-385.</ref> Hydrophobic lipid tails are able to interact with proteins' rigid surfaces while keeping a hydrophilic center that allows the movement of protons.<ref>Belrhalo, H.; Nollert, P.; Royant, A.; Menzel, C.; Rosenbusch, J.; Landau, E.; Ebay-Peyroula, E. Protein, Lipid and Water Organization in Bacteriorhodopsin Crystals: A Molecular View of the Purple Membrane at 1.9 Å Resolution. ''Struc.'' '''1999''', 7 (8), 909-917.</ref> The protons are used to create ATP which is a vital part of the haloarchaea's survival. Once bacteriorhodopsin absorbs a photon, catalysis is triggered, causing a conformational shift from trans to cis, a release of a proton, and a transfer of a proton. The catalytic cycle includes 6 steps of isomerization, accessibility change, and ion transport. <ref>Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. ''IBCH.'' USSR '''1982''', 148 (2), 179-191.</ref> <ref>Noort, J. Unraveling bacteriorhodopsin. ''Biophys. J.'' '''2005''', 88 (2), 763-764.</ref>Bacteriorhodopsin is a type three membrane protein. The side chains of the amino acids are hydrophobic, causing a highly hydrophobic membrane protein pump. Hydrophobia is very common in membrane proteins. | + | Bacteriorhodopsin functions as a proton pump that transports H+ across the gradient and is driven by green light(500nm-650nm).<ref>Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. ''Isr. J. Chem''. '''1995''', 35 (3-4), 365-385.</ref> Hydrophobic lipid tails are able to interact with proteins' rigid surfaces while keeping a hydrophilic center that allows the movement of protons.<ref>Belrhalo, H.; Nollert, P.; Royant, A.; Menzel, C.; Rosenbusch, J.; Landau, E.; Ebay-Peyroula, E. Protein, Lipid and Water Organization in Bacteriorhodopsin Crystals: A Molecular View of the Purple Membrane at 1.9 Å Resolution. ''Struc.'' '''1999''', 7 (8), 909-917.</ref> The protons are used to create ATP which is a vital part of the haloarchaea's survival. Once bacteriorhodopsin absorbs a photon, catalysis is triggered, causing a conformational shift from trans to cis, a release of a proton, and a transfer of a proton. The catalytic cycle includes 6 steps of isomerization, accessibility change, and ion transport. <ref>Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. ''IBCH.'' USSR '''1982''', 148 (2), 179-191.</ref> <ref>Noort, J. Unraveling bacteriorhodopsin. ''Biophys. J.'' '''2005''', 88 (2), 763-764.</ref> The first step of the catalytic cycle is the photoisomerization by retinol to cause all trans to configure into 13-cis. The change allows the Schiff base to transfer a proton to asp 85. Aspartic acid 96 then reprotonates the schiff base via the cytoplasmic channel, causing the retinol reverses the conformational change, returning to all trans<ref>Tittor, J.; Paula, S.; Subramaniam, J.; Herberle, R.; Henderson, Oesterhelt, D. Proton Translocation by Bacteriorhodopsin in Absence of Substantial Comformational Changes. ''J. Mol. Biol.'' '''2002''' 319, 555-565. </ref>. Bacteriorhodopsin is a type three membrane protein. The side chains of the amino acids are hydrophobic, causing a highly hydrophobic membrane protein pump. Hydrophobia is very common in membrane proteins. |
== Relevance == | == Relevance == |
Revision as of 23:55, 16 April 2023
|
References
- ↑ Khorana, H. G.; Gerber, G. E.; Herlihy, W. C.; Gray, C. H.; Anderegg, R. J.; Nihei, K.; Biemann, K. Amino acid sequence of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 1997, 76 (10), 5046-5050.
- ↑ Luecke, H.; Schobert, B.; Ricther, H. T.; Cartailler, J. P.; Lanyi, J. Structure of Bacteriorhodopsin at 1.55 Å Resolution. JMBI. 1999, 291 (4), 899-911.
- ↑ Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High resolution x-ray structure of an early intermediate in the bacteriorhodopsin photocycle. RSCB PDB. 1999, 401 (6755), 822-826.
- ↑ Ovchinnikov, Y. A.; Abdulaev, N. G.; Feigina, M. Y.; Kiselev, A. V.; Lobanov, N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. ICHB. 1979, 100 (2), 219-224.
- ↑ Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. Isr. J. Chem. 1995, 35 (3-4), 365-385.
- ↑ Belrhalo, H.; Nollert, P.; Royant, A.; Menzel, C.; Rosenbusch, J.; Landau, E.; Ebay-Peyroula, E. Protein, Lipid and Water Organization in Bacteriorhodopsin Crystals: A Molecular View of the Purple Membrane at 1.9 Å Resolution. Struc. 1999, 7 (8), 909-917.
- ↑ Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. IBCH. USSR 1982, 148 (2), 179-191.
- ↑ Noort, J. Unraveling bacteriorhodopsin. Biophys. J. 2005, 88 (2), 763-764.
- ↑ Tittor, J.; Paula, S.; Subramaniam, J.; Herberle, R.; Henderson, Oesterhelt, D. Proton Translocation by Bacteriorhodopsin in Absence of Substantial Comformational Changes. J. Mol. Biol. 2002 319, 555-565.
- ↑ Stoeckenius, W.; Bogomolni, R. A. Bacteriorhodopsin and related pigments of halobacteria. Ann. Rev. Biochem. 1982, 52, 587-616.
- ↑ Kouyama, T.; Kinosita, K.; Ikegami, A. Structure and Function of Bacteriorhodopsin. Adv. Biophys. 1988, 24, 123–175.
- ↑ Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367-399.
- ↑ Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. Proc. Natl. Acad. Sci. USA. 1988, 85 (12), 4148–4152.
- ↑ Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO. 1989, 8 (6), 1657-1663
- ↑ Shibata, M.; Tanimoto, T.; Kandori, H. Water Molecules in the Schiff Base Molecules. J. Am. Chem. Soc. 2003 125 (44) 13312–13313
- ↑ Wong, C. W.; Ko, L. N.; Huang, H. J.; Yang, C. S.; Hsu, S. H. Engineered bacteriorhodopsin may induce lung cancer cell cycle arrest and suppress their proliferation and migration. MDPI. 2021, 26 (23).