|
|
Line 3: |
Line 3: |
| <StructureSection load='5a5k' size='340' side='right'caption='[[5a5k]], [[Resolution|resolution]] 2.77Å' scene=''> | | <StructureSection load='5a5k' size='340' side='right'caption='[[5a5k]], [[Resolution|resolution]] 2.77Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5a5k]] is a 24 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5A5K OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5A5K FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5a5k]] is a 24 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5A5K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5A5K FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=7WB:(2Z)-2-INDOL-3-YLIDENE-3H-1,3-THIAZOLE'>7WB</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=7WB:(2Z)-2-INDOL-3-YLIDENE-3H-1,3-THIAZOLE'>7WB</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5a4u|5a4u]], [[5a4v|5a4v]], [[5a4w|5a4w]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5a5k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5a5k OCA], [https://pdbe.org/5a5k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5a5k RCSB], [https://www.ebi.ac.uk/pdbsum/5a5k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5a5k ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5a5k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5a5k OCA], [http://pdbe.org/5a5k PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5a5k RCSB], [http://www.ebi.ac.uk/pdbsum/5a5k PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5a5k ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GSTF2_ARATH GSTF2_ARATH]] Binds auxin, endogenous flavonoids and the phytoalexin camalexin and may be involved in regulating the binding and transport of small bioactive natural products and defense-related compounds during plant stress. Binds a series of heterocyclic compounds, including lumichrome, harmane, norharmane and indole-3-aldehyde. In vitro, possesses glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and benzyl isothiocyanate (BITC). Acts as glutathione peroxidase on cumene hydroperoxide, linoleic acid-13-hydroperoxide and trans-stilbene oxide, but not trans-cinnamic acid or IAA-CoA.<ref>PMID:12090627</ref> <ref>PMID:21631432</ref> | + | [https://www.uniprot.org/uniprot/GSTF2_ARATH GSTF2_ARATH] Binds auxin, endogenous flavonoids and the phytoalexin camalexin and may be involved in regulating the binding and transport of small bioactive natural products and defense-related compounds during plant stress. Binds a series of heterocyclic compounds, including lumichrome, harmane, norharmane and indole-3-aldehyde. In vitro, possesses glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and benzyl isothiocyanate (BITC). Acts as glutathione peroxidase on cumene hydroperoxide, linoleic acid-13-hydroperoxide and trans-stilbene oxide, but not trans-cinnamic acid or IAA-CoA.<ref>PMID:12090627</ref> <ref>PMID:21631432</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 20: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Glutathione S-transferase|Glutathione S-transferase]] | + | *[[Glutathione S-transferase 3D structures|Glutathione S-transferase 3D structures]] |
- | *[[Journal:FEBS Open Bio:2|Journal:FEBS Open Bio:2]]
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Arath]] | + | [[Category: Arabidopsis thaliana]] |
- | [[Category: Glutathione transferase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Ahmad, L]] | + | [[Category: Ahmad L]] |
- | [[Category: Bruce, N C]] | + | [[Category: Bruce NC]] |
- | [[Category: Edwards, R]] | + | [[Category: Edwards R]] |
- | [[Category: Grogan, G]] | + | [[Category: Grogan G]] |
- | [[Category: Rylott, E]] | + | [[Category: Rylott E]] |
- | [[Category: Arabidopsis]]
| + | |
- | [[Category: Glutathione-s-transferase]]
| + | |
- | [[Category: Gst]]
| + | |
- | [[Category: Plant]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
GSTF2_ARATH Binds auxin, endogenous flavonoids and the phytoalexin camalexin and may be involved in regulating the binding and transport of small bioactive natural products and defense-related compounds during plant stress. Binds a series of heterocyclic compounds, including lumichrome, harmane, norharmane and indole-3-aldehyde. In vitro, possesses glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and benzyl isothiocyanate (BITC). Acts as glutathione peroxidase on cumene hydroperoxide, linoleic acid-13-hydroperoxide and trans-stilbene oxide, but not trans-cinnamic acid or IAA-CoA.[1] [2]
Publication Abstract from PubMed
Glutathione transferases (GSTs) are involved in many processes in plant biochemistry, with their best characterised role being the detoxification of xenobiotics through their conjugation with glutathione. GSTs have also been implicated in noncatalytic roles, including the binding and transport of small heterocyclic ligands such as indole hormones, phytoalexins and flavonoids. Although evidence for ligand binding and transport has been obtained using gene deletions and ligand binding studies on purified GSTs, there has been no structural evidence for the binding of relevant ligands in noncatalytic sites. Here we provide evidence of noncatalytic ligand-binding sites in the phi class GST from the model plant Arabidopsis thaliana, AtGSTF2, revealed by X-ray crystallography. Complexes of the AtGSTF2 dimer were obtained with indole-3-aldehyde, camalexin, the flavonoid quercetrin and its non-rhamnosylated analogue quercetin, at resolutions of 2.00, 2.77, 2.25 and 2.38 A respectively. Two symmetry-equivalent-binding sites (L1) were identified at the periphery of the dimer, and one more (L2) at the dimer interface. In the complexes, indole-3-aldehyde and quercetrin were found at both L1 and L2 sites, but camalexin was found only at the L1 sites and quercetin only at the L2 site. Ligand binding at each site appeared to be largely determined through hydrophobic interactions. The crystallographic studies support previous conclusions made on ligand binding in noncatalytic sites by AtGSTF2 based on isothermal calorimetry experiments (Dixon et al. (2011) Biochem J438, 63-70) and suggest a mode of ligand binding in GSTs commensurate with a possible role in ligand transport.
Structural evidence for Arabidopsis glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands.,Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G FEBS Open Bio. 2016 Dec 22;7(2):122-132. doi: 10.1002/2211-5463.12168., eCollection 2017 Feb. PMID:28174680[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wagner U, Edwards R, Dixon DP, Mauch F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol. 2002 Jul;49(5):515-32. PMID:12090627
- ↑ Dixon DP, Sellars JD, Edwards R. The Arabidopsis phi class glutathione transferase AtGSTF2: binding and regulation by biologically active heterocyclic ligands. Biochem J. 2011 Aug 15;438(1):63-70. doi: 10.1042/BJ20101884. PMID:21631432 doi:http://dx.doi.org/10.1042/BJ20101884
- ↑ Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G. Structural evidence for Arabidopsis glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands. FEBS Open Bio. 2016 Dec 22;7(2):122-132. doi: 10.1002/2211-5463.12168., eCollection 2017 Feb. PMID:28174680 doi:http://dx.doi.org/10.1002/2211-5463.12168
|