|
|
Line 3: |
Line 3: |
| <StructureSection load='5agy' size='340' side='right'caption='[[5agy]], [[Resolution|resolution]] 1.75Å' scene=''> | | <StructureSection load='5agy' size='340' side='right'caption='[[5agy]], [[Resolution|resolution]] 1.75Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5agy]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Glycine_hispida Glycine hispida]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AGY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5AGY FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5agy]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Glycine_max Glycine max]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AGY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5AGY FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4NM:4-NITROPHENYL+METHANETHIOL'>4NM</scene>, <scene name='pdbligand=GTB:S-(P-NITROBENZYL)GLUTATHIONE'>GTB</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4NM:4-NITROPHENYL+METHANETHIOL'>4NM</scene>, <scene name='pdbligand=GTB:S-(P-NITROBENZYL)GLUTATHIONE'>GTB</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5agy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5agy OCA], [https://pdbe.org/5agy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5agy RCSB], [https://www.ebi.ac.uk/pdbsum/5agy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5agy ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5agy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5agy OCA], [http://pdbe.org/5agy PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5agy RCSB], [http://www.ebi.ac.uk/pdbsum/5agy PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5agy ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/I1MJ34_SOYBN I1MJ34_SOYBN] Is involved in the conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.[RuleBase:RU369102] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Glutathione transferase]]
| + | [[Category: Glycine max]] |
- | [[Category: Glycine hispida]] | + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Axarli, I]] | + | [[Category: Axarli I]] |
- | [[Category: Dhavala, P]] | + | [[Category: Dhavala P]] |
- | [[Category: Kossida, S]] | + | [[Category: Kossida S]] |
- | [[Category: Kotzia, G]] | + | [[Category: Kotzia G]] |
- | [[Category: Labrou, N E]] | + | [[Category: Labrou NE]] |
- | [[Category: Muleta, A W]] | + | [[Category: Muleta AW]] |
- | [[Category: Papageorgiou, A C]] | + | [[Category: Papageorgiou AC]] |
- | [[Category: Vlachakis, D]] | + | [[Category: Vlachakis D]] |
- | [[Category: Allosterism]]
| + | |
- | [[Category: Binding site]]
| + | |
- | [[Category: Catalytic domain]]
| + | |
- | [[Category: Catalytic mechanism]]
| + | |
- | [[Category: Detoxification]]
| + | |
- | [[Category: Enzyme]]
| + | |
- | [[Category: Herbicide]]
| + | |
- | [[Category: Induction]]
| + | |
- | [[Category: Kinetic]]
| + | |
- | [[Category: Protein stability]]
| + | |
- | [[Category: Site-directed mutagenesis]]
| + | |
- | [[Category: Soy bean]]
| + | |
- | [[Category: Transferase]]
| + | |
- | [[Category: Xenobiotic binding]]
| + | |
| Structural highlights
Function
I1MJ34_SOYBN Is involved in the conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.[RuleBase:RU369102]
Publication Abstract from PubMed
A library of tau class glutathione transferases (GSTs) was constructed by DNA shuffling using the DNA encoding the Glycine max glutathione transferases Gm GSTU2-2, Gm GSTU4-4, and Gm GSTU10-10. The parental GSTs are > 88% identical at the sequence level, however their specificity varies towards different substrates. The DNA library contained chimeric structures of alternated segments of the parental sequences and point mutations. Chimeric GST sequences were expressed in E. coli and their enzymatic activities towards 1-chloro-2,4-dinitrobenzene (CDNB) and the herbicide fluorodifen (4-nitrophenyl alpha,alpha,alpha-trifluoro-2-nitro-p-tolyl ether) were determined. A chimeric clone (Sh14) with enhanced CDNB and fluorodifen detoxifying activities, and unusual cooperative kinetics towards CDNB and fluorodifen but not towards GSH was identified. The structure of Sh14 was determined at 1.75 angstrom resolution in complex with S -(p-nitrobenzyl)-glutathione. Analysis of the Sh14 structure showed that a Trp114Cys point mutation is responsible for the altered kinetic properties. This was confirmed by the kinetic properties of the Sh14 Cys114Trp mutant. It is suggested that the substitution of the bulky Trp residue by a smaller amino acid (Cys) results in conformational changes of the active site cavity leading to enhanced catalytic activity of Sh14. Moreover, the structural changes allow the strengthening of the two salt bridges between Glu66 and Lys104 at the dimer interface that triggers an allosteric effect and the communication between the H-sites.
Directed Evolution of Tau Class Glutathione Transferases Reveals A Site That Regulates Catalytic Efficiency And Masks Cooperativity.,Axarli I, Muleta AW, Vlachakis D, Kossida S, Kotzia G, Maltezos A, Dhavala P, Papageorgiou AC, Labrou NE Biochem J. 2015 Dec 4. pii: BJ20150930. PMID:26637269[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Axarli I, Muleta AW, Vlachakis D, Kossida S, Kotzia G, Maltezos A, Dhavala P, Papageorgiou AC, Labrou NE. Directed Evolution of Tau Class Glutathione Transferases Reveals A Site That Regulates Catalytic Efficiency And Masks Cooperativity. Biochem J. 2015 Dec 4. pii: BJ20150930. PMID:26637269 doi:http://dx.doi.org/10.1042/BJ20150930
|