|
|
Line 3: |
Line 3: |
| <StructureSection load='5ai4' size='340' side='right'caption='[[5ai4]], [[Resolution|resolution]] 1.93Å' scene=''> | | <StructureSection load='5ai4' size='340' side='right'caption='[[5ai4]], [[Resolution|resolution]] 1.93Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5ai4]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AI4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5AI4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ai4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AI4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5AI4 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4VY:2-[(5-BROMO-2-PYRIDYL)-METHYL-AMINO]ETHANOL'>4VY</scene>, <scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4VY:2-[(5-BROMO-2-PYRIDYL)-METHYL-AMINO]ETHANOL'>4VY</scene>, <scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ahx|5ahx]], [[5ai0|5ai0]], [[5ai5|5ai5]], [[5ai6|5ai6]], [[5ai8|5ai8]], [[5ai9|5ai9]], [[5aia|5aia]], [[5aib|5aib]], [[5aic|5aic]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ai4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ai4 OCA], [https://pdbe.org/5ai4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ai4 RCSB], [https://www.ebi.ac.uk/pdbsum/5ai4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ai4 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ai4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ai4 OCA], [http://pdbe.org/5ai4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ai4 RCSB], [http://www.ebi.ac.uk/pdbsum/5ai4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ai4 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/HYES_HUMAN HYES_HUMAN]] Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.<ref>PMID:12574508</ref> <ref>PMID:12574510</ref> | + | [https://www.uniprot.org/uniprot/HYES_HUMAN HYES_HUMAN] Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.<ref>PMID:12574508</ref> <ref>PMID:12574510</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Kack, H]] | + | [[Category: Kack H]] |
- | [[Category: Oster, L]] | + | [[Category: Oster L]] |
- | [[Category: Tapani, S]] | + | [[Category: Tapani S]] |
- | [[Category: Xue, Y]] | + | [[Category: Xue Y]] |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
HYES_HUMAN Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.[1] [2]
Publication Abstract from PubMed
Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation.
Successful generation of structural information for fragment-based drug discovery.,Oster L, Tapani S, Xue Y, Kack H Drug Discov Today. 2015 Apr 28. pii: S1359-6446(15)00154-3. doi:, 10.1016/j.drudis.2015.04.005. PMID:25931264[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Cronin A, Mowbray S, Durk H, Homburg S, Fleming I, Fisslthaler B, Oesch F, Arand M. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1552-7. Epub 2003 Feb 6. PMID:12574508 doi:10.1073/pnas.0437829100
- ↑ Newman JW, Morisseau C, Harris TR, Hammock BD. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1558-63. Epub 2003 Feb 6. PMID:12574510 doi:10.1073/pnas.0437724100
- ↑ Oster L, Tapani S, Xue Y, Kack H. Successful generation of structural information for fragment-based drug discovery. Drug Discov Today. 2015 Apr 28. pii: S1359-6446(15)00154-3. doi:, 10.1016/j.drudis.2015.04.005. PMID:25931264 doi:http://dx.doi.org/10.1016/j.drudis.2015.04.005
|