|
|
Line 3: |
Line 3: |
| <StructureSection load='5amb' size='340' side='right'caption='[[5amb]], [[Resolution|resolution]] 1.55Å' scene=''> | | <StructureSection load='5amb' size='340' side='right'caption='[[5amb]], [[Resolution|resolution]] 1.55Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5amb]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AMB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5AMB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5amb]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AMB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5AMB FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Peptidyl-dipeptidase_A Peptidyl-dipeptidase A], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.15.1 3.4.15.1] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5amb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5amb OCA], [https://pdbe.org/5amb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5amb RCSB], [https://www.ebi.ac.uk/pdbsum/5amb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5amb ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5amb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5amb OCA], [http://pdbe.org/5amb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5amb RCSB], [http://www.ebi.ac.uk/pdbsum/5amb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5amb ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN]] Genetic variations in ACE may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:[http://omim.org/entry/601367 601367]]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.<ref>PMID:15534175</ref> Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:[http://omim.org/entry/267430 267430]]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).<ref>PMID:16116425</ref> Genetic variations in ACE are associated with susceptibility to microvascular complications of diabetes type 3 (MVCD3) [MIM:[http://omim.org/entry/612624 612624]]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Defects in ACE are a cause of susceptibility to intracerebral hemorrhage (ICH) [MIM:[http://omim.org/entry/614519 614519]]. A pathological condition characterized by bleeding into one or both cerebral hemispheres including the basal ganglia and the cerebral cortex. It is often associated with hypertension and craniocerebral trauma. Intracerebral bleeding is a common cause of stroke.<ref>PMID:15277638</ref> [[http://www.uniprot.org/uniprot/A4_HUMAN A4_HUMAN]] Defects in APP are the cause of Alzheimer disease type 1 (AD1) [MIM:[http://omim.org/entry/104300 104300]]. AD1 is a familial early-onset form of Alzheimer disease. It can be associated with cerebral amyloid angiopathy. Alzheimer disease is a neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death.<ref>PMID:8476439</ref> <ref>PMID:15201367</ref> <ref>PMID:1671712</ref> <ref>PMID:1908231</ref> <ref>PMID:1678058</ref> <ref>PMID:1944558</ref> <ref>PMID:1925564</ref> <ref>PMID:1415269</ref> <ref>PMID:1303239</ref> <ref>PMID:1302033</ref> <ref>PMID:1303275</ref> <ref>PMID:8267572</ref> <ref>PMID:8290042</ref> <ref>PMID:8577393</ref> <ref>PMID:9328472</ref> <ref>PMID:9754958</ref> <ref>PMID:10097173</ref> <ref>PMID:10631141</ref> <ref>PMID:10665499</ref> <ref>PMID:10867787</ref> <ref>PMID:11063718</ref> <ref>PMID:11311152</ref> <ref>PMID:11528419</ref> <ref>PMID:12034808</ref> <ref>PMID:15365148</ref> <ref>PMID:15668448</ref> Defects in APP are the cause of cerebral amyloid angiopathy APP-related (CAA-APP) [MIM:[http://omim.org/entry/605714 605714]]. A hereditary localized amyloidosis due to amyloid-beta A4 peptide(s) deposition in the cerebral vessels. The principal clinical characteristics are recurrent cerebral and cerebellar hemorrhages, recurrent strokes, cerebral ischemia, cerebral infarction, and progressive mental deterioration. Patients develop cerebral hemorrhage because of the severe cerebral amyloid angiopathy. Parenchymal amyloid deposits are rare and largely in the form of pre-amyloid lesions or diffuse plaque-like structures. They are Congo red negative and lack the dense amyloid cores commonly present in Alzheimer disease. Some affected individuals manifest progressive aphasic dementia, leukoencephalopathy, and occipital calcifications.<ref>PMID:10821838</ref> <ref>PMID:2111584</ref> <ref>PMID:11409420</ref> <ref>PMID:12654973</ref> <ref>PMID:16178030</ref> | + | [https://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN] Genetic variations in ACE may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:[https://omim.org/entry/601367 601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.<ref>PMID:15534175</ref> Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:[https://omim.org/entry/267430 267430]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).<ref>PMID:16116425</ref> Genetic variations in ACE are associated with susceptibility to microvascular complications of diabetes type 3 (MVCD3) [MIM:[https://omim.org/entry/612624 612624]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Defects in ACE are a cause of susceptibility to intracerebral hemorrhage (ICH) [MIM:[https://omim.org/entry/614519 614519]. A pathological condition characterized by bleeding into one or both cerebral hemispheres including the basal ganglia and the cerebral cortex. It is often associated with hypertension and craniocerebral trauma. Intracerebral bleeding is a common cause of stroke.<ref>PMID:15277638</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN]] Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. [[http://www.uniprot.org/uniprot/A4_HUMAN A4_HUMAN]] Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with Also bind GPC1 in lipid rafts.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain (By similarity).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> | + | [https://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN] Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 27: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Peptidyl-dipeptidase A]]
| + | [[Category: Acharya KR]] |
- | [[Category: Acharya, K R]] | + | [[Category: Douglas RG]] |
- | [[Category: Douglas, R G]] | + | [[Category: Larmuth KM]] |
- | [[Category: Larmuth, K M]] | + | [[Category: Masuyer G]] |
- | [[Category: Masuyer, G]] | + | [[Category: Sturrock ED]] |
- | [[Category: Sturrock, E D]] | + | |
- | [[Category: Amyloid-beta]]
| + | |
- | [[Category: Angiotensin-converting enzyme]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Metalloprotease]]
| + | |
| Structural highlights
5amb is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
ACE_HUMAN Genetic variations in ACE may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[1] Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:267430. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).[2] Genetic variations in ACE are associated with susceptibility to microvascular complications of diabetes type 3 (MVCD3) [MIM:612624. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Defects in ACE are a cause of susceptibility to intracerebral hemorrhage (ICH) [MIM:614519. A pathological condition characterized by bleeding into one or both cerebral hemispheres including the basal ganglia and the cerebral cortex. It is often associated with hypertension and craniocerebral trauma. Intracerebral bleeding is a common cause of stroke.[3]
Function
ACE_HUMAN Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety.
Publication Abstract from PubMed
Angiotensin-1 converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Abeta) substrates together with high resolution crystal structures of N-domain in complex with Abeta fragments. For the physiological Abeta(1-16) peptide, a novel ACE cleavage site was found at His14/Gln15. Furthermore, Abeta(1-16) was preferentially cleaved by the individual N-domain; however, the presence of an inactive C-domain in full-length sACE greatly reduced enzyme activity and affected apparent selectivity. Two fluorogenic substrates, Abeta(4-10)Q and Abeta(4-10)Y underwent endoproteolytic cleavage at the Asp7/Ser8 bond with all ACE constructs showing greater catalytic efficiency for Abeta(4-10)Y. Surprisingly, in contrast to Abeta(1-16) and Abeta(4-10)Q, sACE showed positive domain cooperativity and the double C-domain (CC-sACE) construct no cooperativity towards Abeta(4-10)Y. The structures of the Abeta peptide-ACE complexes revealed a common mode of peptide binding for both domains which principally targets the C-terminal P2' position to the S2' pocket and recognises the main chain of the P1' peptide. It is likely that N-domain selectivity for the amyloid peptide is conferred through the N-domain specific S2' residue Thr358. Additionally, the N-domain can accommodate larger substrates through movement of the N-terminal helices, as suggested by the disorder of the hinge region in the crystal structures. Our findings are important for the design of domain selective inhibitors as the differences in domain-selectivity are more pronounced with the truncated domains compared to the more physiological full-length forms. This article is protected by copyright. All rights reserved.
Kinetic and structural characterisation of amyloid-beta peptides hydrolysis by human angiotensin-1-converting enzyme.,Larmuth KM, Masuyer G, Douglas RG, Schwager SL, Acharya KR, Sturrock ED FEBS J. 2016 Jan 8. doi: 10.1111/febs.13647. PMID:26748546[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
- ↑ Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, Laube G, Delezoide AL, Bouvier R, Dijoud F, Ollagnon-Roman E, Roume J, Joubert M, Antignac C, Gubler MC. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005 Sep;37(9):964-8. Epub 2005 Aug 14. PMID:16116425 doi:ng1623
- ↑ Slowik A, Turaj W, Dziedzic T, Haefele A, Pera J, Malecki MT, Glodzik-Sobanska L, Szermer P, Figlewicz DA, Szczudlik A. DD genotype of ACE gene is a risk factor for intracerebral hemorrhage. Neurology. 2004 Jul 27;63(2):359-61. PMID:15277638
- ↑ Larmuth KM, Masuyer G, Douglas RG, Schwager SL, Acharya KR, Sturrock ED. Kinetic and structural characterisation of amyloid-beta peptides hydrolysis by human angiotensin-1-converting enzyme. FEBS J. 2016 Jan 8. doi: 10.1111/febs.13647. PMID:26748546 doi:http://dx.doi.org/10.1111/febs.13647
|